• 基于Python贝叶斯优化XGBoost算法调参报错“TypeError: ‘float‘ object is not subscriptable”


    基于Python贝叶斯优化XGBoost算法调参运行情况如下:

    itertargetcolsam…gammamax_depthmin_ch…subsample
    10.93980.80430.74836.0276.70.6514
    20.94050.72310.26767.382347.60.7886
    30.93880.80480.71676.818708.60.6096
    40.94210.86760.47568.235155.30.6693
    50.93990.90020.97147.254569.20.9067

    报出如下错误:

    Traceback (most recent call last):
    ......
        suggestion = acq_max(
      File "/usr/local/python3/lib/python3.8/site-packages/bayes_opt/util.py", line 65, in acq_max
        if max_acq is None or -res.fun[0] >= max_acq:
    TypeError: 'float' object is not subscriptable
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6

    参考关键代码如下:

    def _xgb_logistic_evaluate(max_depth, subsample, gamma, colsample_bytree, min_child_weight):
        import xgboost as xgb
    
        params = {
            'objective': 'binary:logistic',  # 逻辑回归二分类的问题
            'eval_metric': 'auc',
            'max_depth': int(max_depth),
            'subsample': subsample,  # 0.8
            'eta': 0.3,
            'gamma': gamma,
            'colsample_bytree': colsample_bytree,
            'min_child_weight': min_child_weight}
    
        cv_result = xgb.cv(params, self.dtrain,
                           num_boost_round=30, nfold=5)
    
        return 1.0 * cv_result['test-auc-mean'].iloc[-1]
        
    def evaluate(self, bo_f, pbounds, init_points, n_iter):
    
        bo = BayesianOptimization(
            f=bo_f,   # 目标函数
            pbounds=pbounds,  # 取值空间
            verbose=2,  # verbose = 2 时打印全部,verbose = 1 时打印运行中发现的最大值,verbose = 0 将什么都不打印
            random_state=1,
            )
    
        bo.maximize(init_points=init_points,   # 随机搜索的步数
                    n_iter=n_iter,       # 执行贝叶斯优化迭代次数
                    acq='ei')
    
        print(bo.max)
        res = bo.max
        params_max = res['params']
    
        return params_max
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36

    参考stackoverflow上的解释:

    This is related to a change in scipy 1.8.0, One should use -np.squeeze(res.fun) instead of -res.fun[0]

    https://github.com/fmfn/BayesianOptimization/issues/300

    The comments in the bug report indicate reverting to scipy 1.7.0 fixes this,

    UPDATED: It seems the fix has been merged in the BayesianOptimization package, but the new maintainer is unable to push a release to pypi https://github.com/fmfn/BayesianOptimization/issues/300#issuecomment-1146903850

    因此,卸载当前scipy 1.8.1,退回到scipy 1.7.0。

    [root@DeepLearning bin]# pip3 uninstall scipy
    ......
      Successfully uninstalled scipy-1.8.1
    [root@DeepLearning bin]# pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple scipy==1.7
      Successfully installed scipy-1.7.0
    
    • 1
    • 2
    • 3
    • 4
    • 5

    成功再运行贝叶斯优化调参程序。

    参考:

    seul233. python使用贝叶斯优化随机森林时出现TypeError: ‘float’ object is not subscriptable. CSDN博客. 2022.03

    https://stackoverflow.com/questions/71460894/bayesianoptimization-fails-due-to-float-error

  • 相关阅读:
    WordPress 插件推荐:菜单缓存插件——Menu Caching
    业务脚本pytest封装
    scala中json转换问题
    package.json scripts 脚本的作用
    面试算法36:后缀表达式
    用「闪电侠」的例子解释一下进程和线程
    iOS 屏幕录制实现
    Docker error
    【付费推广】常见问题合集,搜索推广FAQ 2
    05_利用神经网实现MINST手写数字识别
  • 原文地址:https://blog.csdn.net/xiaoyw/article/details/125457194