Given an n x n grid containing only values 0 and 1, where 0 represents water and 1 represents land, find a water cell such that its distance to the nearest land cell is maximized, and return the distance. If no land or water exists in the grid, return -1.
The distance used in this problem is the Manhattan distance: the distance between two cells (x0, y0) and (x1, y1) is |x0 - x1| + |y0 - y1|.
Example 1:
Input: grid = [[1,0,1],[0,0,0],[1,0,1]]
Output: 2
Explanation: The cell (1, 1) is as far as possible from all the land with distance 2.
Example 2:
Input: grid = [[1,0,0],[0,0,0],[0,0,0]]
Output: 4
Explanation: The cell (2, 2) is as far as possible from all the land with distance 4.
Constraints:
n == grid.length
n == grid[i].length
1 <= n <= 100
grid[i][j] is 0 or 1
impl Solution {
pub fn max_distance(mut grid: Vec<Vec<i32>>) -> i32 {
for i in 0..grid.len() {
for j in 0..grid[0].len() {
if grid[i][j] == 0 {
grid[i][j] = i32::MAX;
continue;
}
grid[i][j] = 0;
}
}
loop {
let mut modified = false;
for i in 0..grid.len() {
for j in 0..grid[0].len() {
let top = if i > 0 { grid[i - 1][j] } else { i32::MAX };
let bottom = if i < grid.len() - 1 {
grid[i + 1][j]
} else {
i32::MAX
};
let left = if j > 0 { grid[i][j - 1] } else { i32::MAX };
let right = if j < grid[0].len() - 1 {
grid[i][j + 1]
} else {
i32::MAX
};
let base = top.min(bottom).min(left).min(right);
if base == i32::MAX {
continue;
}
if grid[i][j] > base + 1 {
grid[i][j] = base + 1;
modified = true;
}
}
}
if !modified {
break;
}
}
let ans = grid
.into_iter()
.map(|row| row.into_iter().max().unwrap())
.max()
.unwrap();
if ans == 0 || ans == i32::MAX {
return -1;
}
ans
}
}