给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。
计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1 。
你可以认为每种硬币的数量是无限的。
示例 1:
输入:coins = [1, 2, 5], amount = 11
输出:3
解释:11 = 5 + 5 + 1
示例 2:
输入:coins = [2], amount = 3
输出:-1
示例 3:
输入:coins = [1], amount = 0
输出:0
提示:
1 <= coins.length <= 12
1 <= coins[i] <= 231 - 1
0 <= amount <= 104
解题思路:
本题可以转换为完全背包问题,使用动态规划解决。
dp[j]:凑足总额为j所需钱币的最少个数为dp[j]。
得到dp[j](考虑coins[i]),只有一个来源,dp[j - coins[i]](没有考虑coins[i])。凑足总额为j - coins[i]的最少个数为dp[j - coins[i]],那么只需要加上一个钱币coins[i]即dp[j - coins[i]] + 1就是dp[j](考虑coins[i]),所以dp[j] 要取所有 dp[j - coins[i]] + 1 中最小的。
递推公式:dp[j] = min(dp[j - coins[i]] + 1, dp[j]);
class Solution {
public int coinChange(int[] coins, int amount) {
int max = Integer.MAX_VALUE;
int[] dp = new int[amount + 1];
//将dp数组初始化为最大值
for (int i = 0; i < dp.length; i++) {
dp[i] = max;
}
dp[0] = 0;
for (int i = 0; i < coins.length; i++) {
for (int j = coins[i]; j <= amount; j++) {
if (dp[j - coins[i]] != max) {
dp[j] = Math.min(dp[j], dp[j - coins[i]] + 1);
}
}
}
return (dp[amount] == max) ? -1 : dp[amount];
}
}