• IQtree:使用 SNP 数据(vcf file)构建玉米群体的系统发育树



    IQtree 是一款用于构建系统发育树的软件,支持 Phylip、Fasta、Nexus、Clustalw 等多序列比对后的数据格式。但随着 SNP 数据费用的大幅下降,研究人员利用 SNP 数据构建系统发育树的情况越大越多。本文为用 vcf 格式的 SNP 数据构建系统发育树的教程,主要包括:Vcf 文件转 Phylip 文件、Phylip 文件输入 IQtree 建树 两部分。



    数据集

    本教程使用的数据集矩阵大小为 577 × 10000。样本取自 577 个玉米品系,包含 70 个大刍草(par)、208 个热带品系(tst)、172 个温带品系(temp)、127 个混合品系(mixed)。SNP 取自 3 号染色体上 743w SNP,经过过滤(maf > 0,miss = 0)与随机抽样后,最终得到 1w SNP。数据已上传(链接如下),免费下载(0 积分)。


    IQtree:使用SNP数据(vcffile)构建系统发育树(数据)



    1. Vcf 文件转 Phylip 文件

    python vcf2phylip.py --input Maize_Chr3.maf_0.miss_0.10000SNP.vcf
    
    	--input FILENAME    Name of the input VCF file, 
    						can be gzipped (but the extension must be .vcf.gz)
    
    • 1
    • 2
    • 3
    • 4

    输出文件:Maize_Chr3.maf_0.miss_0.10000SNP.min4.phy


    使用 vcf2phylip.py 脚本将 vcf 文件转化为 phylip 格式。vcf2phylip.py 脚本格式转换速度较快,例如,处理 20GB VCF(约 300w SNP x 650 个体)约 27 分钟。除了默认的输出格式 PHYLIP 外,还支持将 VCF 转换为 FASTA、NEXUS 或二进制 NEXUS 格式。

    vcf2phylip.py 脚本的下载、详细介绍参见:https://github.com/edgardomortiz/vcf2phylip



    2. Phylip 文件输入 IQtree 建树

    iqtree -s Maize_Chr3.maf_0.miss_0.10000SNP.min4.phy -keep-ident -m GTR+F+R6+ASC -fast -nt 50
    	
    	-s					输入文件
    	-keep-ident			保留序列相同的样本
    	-m					选择替换模型(substitution model)
    	-fast				加速建树
    	-nt					最大线程数
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7

    程序大概率会报错(Error)并输出文件:Maize_Chr3.maf_0.miss_0.10000SNP.varsites.phy


    • ASC(ascertainment bias correction)是 IQtree 处理 SNP 数据时需要添加的参数,可以矫正因 SNP 数据所导致的系统发育树分枝长度过长与结构错误等问题(参见附录 ASC)。
    • ASC 模式要求输入的 SNP 必须是 variable sites ,但 IQtree 对 constant、singleton、variable 概念定义较为特殊(参见附录 Ambiguous site),可能 phy 文件中有大量的位点被识别为 constant sites。如本教程数据集 1w SNP 中有 6466 SNP 被识别为 constant sites。若 phy 文件中包含 constant sites,IQtree 会报错并输出 varsites.phy 文件,包含输入数据中的 singleton 与 variable sites。
    • IQtree 默认在建树过程中会删除相同序列的样本,待建树完成后再添加,以节省分析时间。但这也会使 varsites.phy 输出文件中的样本数不足 577。虽然本数据集中不存在样本序列相同,但如果 SNP 较少且样本间亲缘关系较近,则群体中可能包含相同序列。-keep-ident 参数可以保留序列相同的样本,使输出样本数与输入样本数保持一致。
    • -fast 参数通过仅使用 最大简约(maximum parsimony)和 BIONJ 2 种方法构建系统发育树,仅进行 2 轮树的优化(-nstop=2),且无 OPTIMIZING CANDIDATE TREE SET 步骤。否则(不使用 -fast 参数)使用 100 种构建方法(default -ninit=100),并至多迭代 100 次(default -nstop=100)进行树的优化。
    • 经过 ModelFinder 检索(-m MF),本数据集的最佳替换模型为 GTR+F+R6+ASC,所以这里直接指定 -m GTR+F+R6+ASC 模型。
    iqtree -s Maize_Chr3.maf_0.miss_0.10000SNP.varsites.phy -m GTR+F+G4+ASC -fast -nt 50
    
    • 1

    将输出文件 Maize_Chr3.maf_0.miss_0.10000SNP.varsites.phy.treefile 放入 iTOL 中即可观察所构建出的系统发育树结构。



    附录

    Ambiguous site

    • IQtree 将位点(site)分为 3 类:constant(invariant)、singleton、informative(variable)。constant site 指位点在所有样本中只包含 1 种碱基;singleton site 指位点包含 2 种类型碱基,但突变仅出现 1 次;informative site 指位点包含 2 种类型碱基,且每种碱基出现至少 2 次。从算法角度来说,IQtree 无法利用 singleton 对样本分群,即无法提供分群信息,所以 constant 与 singleton 位点属于 uninformative site 。

    • IQtree 对歧义位点(Ambiguous site)位点采用交集(intersection)形式分析:如果交集非空则忽略歧义碱基,若为空则视为 variant,同列中歧义碱基不堆叠。

        site        1234567
        species_1   CCCCCCC
        species_2   RTCYRCC
        species_3   CYTYYRT
        species_4   CCCYCRT
      
        site1 is singleton, because R={A or G}, which exclude C, uninformative.
        site2 is singleton, because Y={C or T}, which include C, ignore Y, uninformative.
        site3 is singleton, uninformative.
        site4 is constant, because Y={C or T}, which include C, ignore Y, uninformative.
        site5 is singleton, because R={A or G}, which exclude C, Y={C or T}, which include C, ignore Y, uninformative.
        site6 is singleton, because R={A or G}, which exclude C, uninformative.
        site7 is informative.
      
      • 1
      • 2
      • 3
      • 4
      • 5
      • 6
      • 7
      • 8
      • 9
      • 10
      • 11
      • 12
      • 13
    • 由于歧义位点的交集策略,当同列中仅包含非空歧义碱基时,位点会被判定为 constant site(如上例中 site 4)。因此 SNP 数据从 vcf 转 phylip 后存在部分 site 被判定为 constant 的情况。如本教程 1w SNP 中包括 1807 parsimony-informative sites,1867 singleton sites,6466 constant sites。


    ASC

    IQtree 构建系统发育树时,informative sites 用于推断树的拓扑结构与分枝长度,uninformative site 则用于矫正。由于个体间固定长度区间内 SNP 越多,说明个体间积累的突变越多,分离的时间越长。所以 SNP 构成的 Fasta 数据大幅增加了突变的密度,使个体间分离时间大幅提前,导致 分枝过长

    同时,分枝过长 会压缩祖先之间的分枝长度,降低 祖先之间拓扑结构推断的 准确性。因为祖先与个体之间时间跨度越长,祖先的可能性就越多,如果祖先对应一个概率分布,则祖先与祖先之间的分布交集就越大。

    例如 A / B 的祖先是 D,C 的祖先是 E,D / E 的祖先是 F,如果 A / B / C 与 D / E 的距离越远,D / E 的可能序列就越多,D / E 分布重合的区间就越大;因为 D / E 间相似度高,所以 D / E 与 F 的距离会缩短,即压缩 D / E 与祖先 F 之间的分枝长度,降低树结构预测的准确性。

    为了矫正输入 SNP 数据导致发育树分枝过长的情况,IQtree 提供 +ASC 参数(ascertainment bias correction)。使用本教程数据,分别评测了 GTR+F+G4 和 GTR+F+G4+ASC 两种替换模型下的树结构,结果参见下节(Test 2&3)。+ASC 虽然对 Log-likelihood 影响较小(1.2%=1-79848/80786),但对树结构影响较大(23.3%=1-5.536/7.216),且能够大幅提高稳定性(148%->0%)。


    不同参数的性能测试

    TestinputmodeloptimizeLog-likelihoodTotal tree lengthSum of internal branch lengths (ratio)near-zero internal branchesLmap not informative ratio
    1min4.phyGTR+F+G4fast-956363.7510.799 (21%)938.48%
    2varsites.phyGTR+F+G4fast-807867.2161.549 (21%)9714.82%
    3varsites.phyGTR+F+G4+ASCfast-798485.5361.185 (21%)1010%
    4varsites.phyGTR+F+R6+ASCfast-774261.3270.269 (20%)2630%
    5varsites.phyGTR+F+R6+ASCcomplete-772391.0790.210 (19%)3160%

    • Test 1&2:使用 IQtree 过滤 SNP 数据集中的 constant site 后再输入 IQtree,不仅可以使用 +ASC 提高模型 精度,还能减少建树 时间(min4 299s,varsites 50s)。
    • Test 2&3:ASC 使树的 分枝长度 大幅降低(23.3%=1-5.536/7.216),且能够大幅提高 稳定性(148%->0%),但对 似然值 改变较小(1.2%=1-79848/80786)。
    • Test 3&4:更换模型 使树的 分枝长度 大幅降低(75%=1-1.328/5.536),但 似然值 改变较小(3%=1-77426/79848)。
    • Test 4&5:多轮迭代 使树的 分枝长度 大幅降低(20%=1-1.079/1.328),但 似然值 改变微小(3‰=1-77239/77426)。
    • Test all:所有模型中中间分枝(internal branch)长度占总枝长比例基本固定(约 20%),near-zero 与 tree length 相关性较高,当发育树整体分枝长度增加时,内部分枝长度也相应增加,其中近 0 分枝数量减少。中间分枝长度占比 20 % 说明 80% 的枝长分布在 末端分枝,个体间距离较大,分离时间较早。部分祖先间的进化关系太紧密(near-zero),用多叉树描述可能更符合这些节点。



    重复

    iqtree -s Maize_Chr3.maf_0.miss_0.10000SNP.varsites.phy -m GTR+F+R6+ASC -p 1wSNP_varsites.nex -fast -nt 50
    
    • 1
    RepeatLog-likelihoodTotal tree lengthSum of internal branch lengths (ratio)near-zero internal branches
    1-724351.3830.281(20%)287
    2-720461.8920.385 (20%)217
    3-724161.7240.345 (20%)234
    4-725311.6070.332 (20%)220
    • Log-likelihood 变化较小,但 tree length 浮动较大。near-zero 与 Sum of internal 与 tree length 相关性较高。



    参考

    http://www.iqtree.org/doc/Substitution-Models

    1. Binary and morphological models
    2. Ascertainment bias correction

    http://www.iqtree.org/doc/Command-Reference

    http://www.iqtree.org/doc/Frequently-Asked-Questions

    1. Why does IQ-TREE complain about the use of +ASC model?
    2. What are the differences between alignment columns/sites and patterns?
  • 相关阅读:
    阿里云2核4G服务器5M带宽5年费用价格明细表
    idea配置文件属性提示消息解决方案
    HTML5期末考核大作业 基于HTML+CSS+JavaScript仿王者荣耀首页 游戏网站开发 游戏官网设计与实现
    一般物品识别易语言代码
    基于STM32的智能家居控制系统设计与实现(带红外遥控控制空调)
    《元宇宙2086》亮相金鸡奖中国首部元宇宙概念院线电影启动
    gopacket使用示例
    SSM+Vue+Element-UI实现员工工资管理系统
    持续更新ChatGPT商业运营网站程序源码,支持Midjourney绘画Dalle3绘画,多种语音对话+suno-ai音乐生成+TTS语音对话+支持GPTs
    【接口性能优化】一、SQL优化篇
  • 原文地址:https://blog.csdn.net/sinat_41621566/article/details/125427326