《MATLAB 神经网络43个案例分析》是MATLAB技术论坛(www.matlabsky.com)策划,由王小川老师主导,2013年北京航空航天大学出版社出版的关于MATLAB为工具的一本MATLAB实例教学书籍,是在《MATLAB神经网络30个案例分析》的基础上修改、补充而成的,秉承着“理论讲解—案例分析—应用扩展”这一特色,帮助读者更加直观、生动地学习神经网络。
《MATLAB神经网络43个案例分析》共有43章,内容涵盖常见的神经网络(BP、RBF、SOM、Hopfield、Elman、LVQ、Kohonen、GRNN、NARX等)以及相关智能算法(SVM、决策树、随机森林、极限学习机等)。同时,部分章节也涉及了常见的优化算法(遗传算法、蚁群算法等)与神经网络的结合问题。此外,《MATLAB神经网络43个案例分析》还介绍了MATLAB R2012b中神经网络工具箱的新增功能与特性,如神经网络并行计算、定制神经网络、神经网络高效编程等。
近年来随着人工智能研究的兴起,神经网络这个相关方向也迎来了又一阵研究热潮,由于其在信号处理领域中的不俗表现,神经网络方法也在不断深入应用到语音和图像方向的各种应用当中,本文结合书中案例,对其进行仿真实现,也算是进行一次重新学习,希望可以温故知新,加强并提升自己对神经网络这一方法在各领域中应用的理解与实践。自己正好在多抓鱼上入手了这本书,下面开始进行仿真示例,主要以介绍各章节中源码应用示例为主,本文主要基于MATLAB2015b(32位)平台仿真实现,这是本书第三十三章模糊神经网络的预测算法实例,话不多说,开始!
打开MATLAB,点击“主页”,点击“打开”,找到示例文件
选中FuzzyNet.m,点击“打开”
FuzzyNet.m源码如下:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%功能: 该代码为基于模糊神经网络的水质评价代码
%环境:Win7,Matlab2015b
%Modi: C.S
%时间:2022-06-20
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 该代码为基于模糊神经网络的水质评价代码
%
% <html>
% <table border="0" width="600px" id="table1"> <tr> <td><b><font size="2">该案例作者申明:</font></b></td> </tr> <tr><td><span class="comment"><font size="2">1:本人长期驻扎在此<a target="_blank" href="http://www.ilovematlab.cn/forum-158-1.html"><font color="#0000FF">板块</font></a>里,对该案例提问,做到有问必答。本套书籍官方网站为:<a href="http://video.ourmatlab.com">video.ourmatlab.com</a></font></span></td></tr><tr> <td><font size="2">2:点此<a href="http://union.dangdang.com/transfer/transfer.aspx?from=P-284318&backurl=http://www.dangdang.com/">从当当预定本书</a>:<a href="http://union.dangdang.com/transfer/transfer.aspx?from=P-284318&backurl=http://www.dangdang.com/">《Matlab神经网络30个案例分析》</a>。</td></tr><tr> <td><p class="comment"></font><font size="2">3</font><font size="2">:此案例有配套的教学视频,视频下载方式<a href="http://video.ourmatlab.com/vbuy.html">video.ourmatlab.com/vbuy.html</a></font><font size="2">。 </font></p></td> </tr> <tr> <td><span class="comment"><font size="2"> 4:此案例为原创案例,转载请注明出处(《Matlab神经网络30个案例分析》)。</font></span></td> </tr> <tr> <td><span class="comment"><font size="2"> 5:若此案例碰巧与您的研究有关联,我们欢迎您提意见,要求等,我们考虑后可以加在案例里。</font></span></td> </tr> </table>
% </html>
%% 清空环境变量
clc
clear
tic
%% 参数初始化
xite=0.001;
alfa=0.05;
%网络节点
I=6; %输入节点数
M=12; %隐含节点数
O=1; %输出节点数
%系数初始化
p0=0.3*ones(M,1);p0_1=p0;p0_2=p0_1;
p1=0.3*ones(M,1);p1_1=p1;p1_2=p1_1;
p2=0.3*ones(M,1);p2_1=p2;p2_2=p2_1;
p3=0.3*ones(M,1);p3_1=p3;p3_2=p3_1;
p4=0.3*ones(M,1);p4_1=p4;p4_2=p4_1;
p5=0.3*ones(M,1);p5_1=p5;p5_2=p5_1;
p6=0.3*ones(M,1);p6_1=p6;p6_2=p6_1;
%参数初始化
c=1+rands(M,I);c_1=c;c_2=c_1;
b=1+rands(M,I);b_1=b;b_2=b_1;
maxgen=100; %进化次数
%网络测试数据,并对数据归一化
load data1 input_train output_train input_test output_test
%选连样本输入输出数据归一化
[inputn,inputps]=mapminmax(input_train);
[outputn,outputps]=mapminmax(output_train);
[n,m]=size(input_train);
%% 网络训练
%循环开始,进化网络
for iii=1:maxgen
iii;
for k=1:m
x=inputn(:,k);
%输出层结算
for i=1:I
for j=1:M
u(i,j)=exp(-(x(i)-c(j,i))^2/b(j,i));
end
end
%模糊规则计算
for i=1:M
w(i)=u(1,i)*u(2,i)*u(3,i)*u(4,i)*u(5,i)*u(6,i);
end
addw=sum(w);
for i=1:M
yi(i)=p0_1(i)+p1_1(i)*x(1)+p2_1(i)*x(2)+p3_1(i)*x(3)+p4_1(i)*x(4)+p5_1(i)*x(5)+p6_1(i)*x(6);
end
addyw=yi*w';
%网络预测计算
yn(k)=addyw/addw;
e(k)=outputn(k)-yn(k);
%计算p的变化值
d_p=zeros(M,1);
d_p=xite*e(k)*w./addw;
d_p=d_p';
%计算b变化值
d_b=0*b_1;
for i=1:M
for j=1:I
d_b(i,j)=xite*e(k)*(yi(i)*addw-addyw)*(x(j)-c(i,j))^2*w(i)/(b(i,j)^2*addw^2);
end
end
%更新c变化值
for i=1:M
for j=1:I
d_c(i,j)=xite*e(k)*(yi(i)*addw-addyw)*2*(x(j)-c(i,j))*w(i)/(b(i,j)*addw^2);
end
end
p0=p0_1+ d_p+alfa*(p0_1-p0_2);
p1=p1_1+ d_p*x(1)+alfa*(p1_1-p1_2);
p2=p2_1+ d_p*x(2)+alfa*(p2_1-p2_2);
p3=p3_1+ d_p*x(3)+alfa*(p3_1-p3_2);
p4=p4_1+ d_p*x(4)+alfa*(p4_1-p4_2);
p5=p5_1+ d_p*x(5)+alfa*(p5_1-p5_2);
p6=p6_1+ d_p*x(6)+alfa*(p6_1-p6_2);
b=b_1+d_b+alfa*(b_1-b_2);
c=c_1+d_c+alfa*(c_1-c_2);
p0_2=p0_1;p0_1=p0;
p1_2=p1_1;p1_1=p1;
p2_2=p2_1;p2_1=p2;
p3_2=p3_1;p3_1=p3;
p4_2=p4_1;p4_1=p4;
p5_2=p5_1;p5_1=p5;
p6_2=p6_1;p6_1=p6;
c_2=c_1;c_1=c;
b_2=b_1;b_1=b;
end
E(iii)=sum(abs(e));
end
figure(1);
plot(outputn,'r')
hold on
plot(yn,'b')
hold on
plot(outputn-yn,'g');
legend('实际输出','预测输出','误差','fontsize',12)
title('训练数据预测','fontsize',12)
xlabel('样本序号','fontsize',12)
ylabel('水质等级','fontsize',12)
%% 网络预测
%数据归一化
inputn_test=mapminmax('apply',input_test,inputps);
[n,m]=size(inputn_test)
for k=1:m
x=inputn_test(:,k);
%计算输出中间层
for i=1:I
for j=1:M
u(i,j)=exp(-(x(i)-c(j,i))^2/b(j,i));
end
end
for i=1:M
w(i)=u(1,i)*u(2,i)*u(3,i)*u(4,i)*u(5,i)*u(6,i);
end
addw=0;
for i=1:M
addw=addw+w(i);
end
for i=1:M
yi(i)=p0_1(i)+p1_1(i)*x(1)+p2_1(i)*x(2)+p3_1(i)*x(3)+p4_1(i)*x(4)+p5_1(i)*x(5)+p6_1(i)*x(6);
end
addyw=0;
for i=1:M
addyw=addyw+yi(i)*w(i);
end
%计算输出
yc(k)=addyw/addw;
end
%预测结果反归一化
test_simu=mapminmax('reverse',yc,outputps);
%作图
figure(2)
plot(output_test,'r')
hold on
plot(test_simu,'b')
hold on
plot(test_simu-output_test,'g')
legend('实际输出','预测输出','误差','fontsize',12)
title('测试数据预测','fontsize',12)
xlabel('样本序号','fontsize',12)
ylabel('水质等级','fontsize',12)
%% 嘉陵江实际水质预测
load data2 hgsc gjhy dxg
%-----------------------------------红工水厂-----------------------------------
zssz=hgsc;
%数据归一化
inputn_test =mapminmax('apply',zssz,inputps);
[n,m]=size(zssz);
for k=1:1:m
x=inputn_test(:,k);
%计算输出中间层
for i=1:I
for j=1:M
u(i,j)=exp(-(x(i)-c(j,i))^2/b(j,i));
end
end
for i=1:M
w(i)=u(1,i)*u(2,i)*u(3,i)*u(4,i)*u(5,i)*u(6,i);
end
addw=0;
for i=1:M
addw=addw+w(i);
end
for i=1:M
yi(i)=p0_1(i)+p1_1(i)*x(1)+p2_1(i)*x(2)+p3_1(i)*x(3)+p4_1(i)*x(4)+p5_1(i)*x(5)+p6_1(i)*x(6);
end
addyw=0;
for i=1:M
addyw=addyw+yi(i)*w(i);
end
%计算输出
szzb(k)=addyw/addw;
end
szzbz1=mapminmax('reverse',szzb,outputps);
for i=1:m
if szzbz1(i)<=1.5
szpj1(i)=1;
elseif szzbz1(i)>1.5&&szzbz1(i)<=2.5
szpj1(i)=2;
elseif szzbz1(i)>2.5&&szzbz1(i)<=3.5
szpj1(i)=3;
elseif szzbz1(i)>3.5&&szzbz1(i)<=4.5
szpj1(i)=4;
else
szpj1(i)=5;
end
end
% %-----------------------------------高家花园-----------------------------------
zssz=gjhy;
inputn_test =mapminmax('apply',zssz,inputps);
[n,m]=size(zssz);
for k=1:1:m
x=inputn_test(:,k);
%计算输出中间层
for i=1:I
for j=1:M
u(i,j)=exp(-(x(i)-c(j,i))^2/b(j,i));
end
end
for i=1:M
w(i)=u(1,i)*u(2,i)*u(3,i)*u(4,i)*u(5,i)*u(6,i);
end
addw=0;
for i=1:M
addw=addw+w(i);
end
for i=1:M
yi(i)=p0_1(i)+p1_1(i)*x(1)+p2_1(i)*x(2)+p3_1(i)*x(3)+p4_1(i)*x(4)+p5_1(i)*x(5)+p6_1(i)*x(6);
end
addyw=0;
for i=1:M
addyw=addyw+yi(i)*w(i);
end
%计算输出
szzb(k)=addyw/addw;
end
szzbz2=mapminmax('reverse',szzb,outputps);
for i=1:m
if szzbz2(i)<=1.5
szpj2(i)=1;
elseif szzbz2(i)>1.5&&szzbz2(i)<=2.5
szpj2(i)=2;
elseif szzbz2(i)>2.5&&szzbz2(i)<=3.5
szpj2(i)=3;
elseif szzbz2(i)>3.5&&szzbz2(i)<=4.5
szpj2(i)=4;
else
szpj2(i)=5;
end
end
% %-----------------------------------大溪沟水厂-----------------------------------
zssz=dxg;
inputn_test =mapminmax('apply',zssz,inputps);
[n,m]=size(zssz);
for k=1:1:m
x=inputn_test(:,k);
%计算输出中间层
for i=1:I
for j=1:M
u(i,j)=exp(-(x(i)-c(j,i))^2/b(j,i));
end
end
for i=1:M
w(i)=u(1,i)*u(2,i)*u(3,i)*u(4,i)*u(5,i)*u(6,i);
end
addw=0;
for i=1:M
addw=addw+w(i);
end
for i=1:M
yi(i)=p0_1(i)+p1_1(i)*x(1)+p2_1(i)*x(2)+p3_1(i)*x(3)+p4_1(i)*x(4)+p5_1(i)*x(5)+p6_1(i)*x(6);
end
addyw=0;
for i=1:M
addyw=addyw+yi(i)*w(i);
end
%计算输出
szzb(k)=addyw/addw;
end
szzbz3=mapminmax('reverse',szzb,outputps);
for i=1:m
if szzbz3(i)<=1.5
szpj3(i)=1;
elseif szzbz3(i)>1.5&&szzbz3(i)<=2.5
szpj3(i)=2;
elseif szzbz3(i)>2.5&&szzbz3(i)<=3.5
szpj3(i)=3;
elseif szzbz3(i)>3.5&&szzbz3(i)<=4.5
szpj3(i)=4;
else
szpj3(i)=5;
end
end
figure(3)
plot(szzbz1,'o-r')
hold on
plot(szzbz2,'*-g')
hold on
plot(szzbz3,'*:b')
xlabel('时间','fontsize',12)
ylabel('预测水质','fontsize',12)
legend('红工水厂','高家花园水厂','大溪沟水厂','fontsize',12)
toc
% web browser www.matlabsky.com
%%
% <html>
% <table width="656" align="left" > <tr><td align="center"><p><font size="2"><a href="http://video.ourmatlab.com/">Matlab神经网络30个案例分析</a></font></p><p align="left"><font size="2">相关论坛:</font></p><p align="left"><font size="2">《Matlab神经网络30个案例分析》官方网站:<a href="http://video.ourmatlab.com">video.ourmatlab.com</a></font></p><p align="left"><font size="2">Matlab技术论坛:<a href="http://www.matlabsky.com">www.matlabsky.com</a></font></p><p align="left"><font size="2">M</font><font size="2">atlab函数百科:<a href="http://www.mfun.la">www.mfun.la</a></font></p><p align="left"><font size="2">Matlab中文论坛:<a href="http://www.ilovematlab.com">www.ilovematlab.com</a></font></p></td> </tr></table>
% </html>
添加完毕,点击“运行”,开始仿真,输出仿真结果如下:
n =
6
m =
50
时间已过 2.248055 秒。
模糊神经网络就是模糊理论同神经网络相结合的产物,它汇集了神经网络与模糊理论的优点,集学习、联想、识别、信息处理于一体。系统的复杂性与所要求的精确性之间存在尖锐矛盾,为此,通过模拟人类学习和自适应能力,人们提出了智能控制的思想。控制理论专家Austrom(1991)在IFAC 大会上指出:模糊逻辑控制、神经网络与专家控制是三种典型的智能控制方法。通常专家系统建立在专家经验上,并非建立在工业过程所产生的操作数据上,且一般复杂系统所具有的不精确性、不确定性就算领域专家也很难把握,这使建立专家系统非常困难。而模糊逻辑和神经网络作为两种典型的智能控制方法,各有优缺,模糊逻辑与神经网络的融合———模糊神经网络(Fuzzy Neural Network)由于吸取了模糊逻辑和神经网络的优点, 部分避免了两者的缺点, 已经成为当今智能控制研究的热点之一。
模糊逻辑(FL)、神经网络理论(NN)、遗传算法(GA)、随机推理(PR), 以及置信网络、混沌理论和部分学习理论相融合,形成了一种协作体,这种融合并非杂乱无章地将模糊逻辑、神经网络和遗传算法等进行拼凑,而是通过各种方法解决本领域的问题并相互取长补短,从而形成了各种方法的协作.从这个意义上讲,各种方法是互补的, 而不是竞争的。在协作体中, 各种方法起着不同的作用.通过这种协作,产生了混合智能系统.模糊逻辑和神经网络都是重要的智能控制方法,将模糊逻辑和神经网络这两种软计算方法相结合, 取长补短, 形成一种协作体———模糊神经网络。同理的,模糊PID就是模糊理论的发展与延伸之一,对本章内容感兴趣或者想充分学习了解的,建议去研习书中第三十三章节的内容。后期会对其中一些知识点在自己理解的基础上进行补充,欢迎大家一起学习交流。