An integer sequence with length nn, denoted by a_1,a_2,\cdots,a_na1,a2,⋯,an, is generated randomly, and the probability of being 1,2,\cdots,n1,2,⋯,n are all \frac{1}{n}n1 for each a_iai (i=1,2,\cdots,n)(i=1,2,⋯,n).
Your task is to calculate the expected number of permutations p_1,p_2,\cdots,p_np1,p2,⋯,pn from 11 to nn such that p_i \le a_ipi≤ai holds for each i=1,2,\cdots,ni=1,2,⋯,n.
Input
The only line contains an integer nn (1 \leq n \leq 50)(1≤n≤50).
Output
Output the expected number of permutations satisfying the condition. Your answer is acceptable if its absolute or relative error does not exceed 10^{-9}10−9.
Formally speaking, suppose that your output is xx and the jury's answer is yy. Your output is accepted if and only if \frac{|x - y|}{\max(1, |y|)} \leq 10^{-9}max(1,∣y∣)∣x−y∣≤10−9.
Inputcopy | Outputcopy |
---|---|
2 | 1.000000000000 |
Sample 2
Inputcopy | Outputcopy |
---|---|
3 | 1.333333333333 |
Sample 3
Inputcopy | Outputcopy |
---|---|
50 | 104147662762941310907813025277584020848013430.758061352192 |
题意:长度为n的a数组中,每个数是1,2,3,4..n的概率都是1/n,对于全排列的p数组(如1,2,3。1,3,2。2,1,3。2,3,1。3,1,2。3,2,1),全部下标i都成立的pi<ai的数学期望是多少。
题意比较难懂,就是所有全排列的p数组答案+起来,p数组为1,2答案2/4,因为a数组有1,2。2,2可以,两个的概率是2/2*2=0.5,p数组为2,1的答案也是0.5,最后就是1.000000。
思路:答案简单算算可以知道为:(n!*n!)/n^n。没有公式直接算即可。
,他的意思应该是前10位对就ok,所以c++的long double和py直接小数计算都可
代码:
- #include<bits/stdc++.h>
- using namespace std;
- #define fo(a,b) for(int i=a;i<=b;i++)
- #define inf 0x3f3f3f3f
- #define dou long double
- #define M 100005
- dou res=1,n;
- int main(){
- cin>>n;
- for(dou i=0;i<n;i++){
- res*=(n-2*i+i*i/n);
- }
- printf("%.15Lf\n",res);
- return 0;
- }
py代码:
- n=(int)(input())
- res=1
- for i in range(1,n+1):
- res*=1.0/n*i*i
- print(res)