• leetcode 1642. Furthest Building You Can Reach(能到达的最远的建筑)


    You are given an integer array heights representing the heights of buildings, some bricks, and some ladders.

    You start your journey from building 0 and move to the next building by possibly using bricks or ladders.

    While moving from building i to building i+1 (0-indexed),

    If the current building’s height is greater than or equal to the next building’s height, you do not need a ladder or bricks.
    If the current building’s height is less than the next building’s height, you can either use one ladder or (h[i+1] - h[i]) bricks.
    Return the furthest building index (0-indexed) you can reach if you use the given ladders and bricks optimally.

    Example 1:
    在这里插入图片描述
    Input: heights = [4,2,7,6,9,14,12], bricks = 5, ladders = 1
    Output: 4
    Explanation: Starting at building 0, you can follow these steps:

    • Go to building 1 without using ladders nor bricks since 4 >= 2.
    • Go to building 2 using 5 bricks. You must use either bricks or ladders because 2 < 7.
    • Go to building 3 without using ladders nor bricks since 7 >= 6.
    • Go to building 4 using your only ladder. You must use either bricks or ladders because 6 < 9.
      It is impossible to go beyond building 4 because you do not have any more bricks or ladders.

    你手上有砖和梯子两种工具,当下一个楼比当前楼更高的时候,就要借助砖或者梯子上去,
    选砖的话就需要 高度差 块砖,选梯子的话只需要一个梯子。
    问最远能到达第几个建筑,从下标0开始。

    思路

    如果高度差很大的话,需要很多块砖,但是只需要一个梯子,
    一个直觉的想法就是高度差最大的那几个用梯子,剩下的用砖,就能资源最大化,走得更远。

    那显然高度差不是排好序的,也不能排序,毕竟楼就在那里不能移动。
    所以有一个想法就是先用砖,砖不够的时候把目前为止最大的高度差的那个地方把砖换成梯子,同时把砖回收回来下次用。

    那怎样找到目前为止最大的高度差呢,用最大堆即可。

    public int furthestBuilding(int[] heights, int bricks, int ladders) {
        int n = heights.length;
        if(n == 1) return 0;
        
        
        PriorityQueue<Integer> queue = new PriorityQueue<>(Collections.reverseOrder());
        
        for(int i = 0; i < n - 1; i++) {
            if(heights[i] >= heights[i+1]) continue;
            
            bricks -= heights[i+1] - heights[i];
            queue.add(heights[i+1] - heights[i]);
            
            if(bricks < 0) {
                bricks += queue.poll();
                if(ladders > 0) ladders --;
                else return i;
            }
            
        }
        return n - 1;
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22

    上面这样写时间效率不高,因为每一步都要把高度差加到queue里

    public int furthestBuilding(int[] heights, int bricks, int ladders) {
        int n = heights.length;
        if(n == 1) return 0;
        
        
        PriorityQueue<Integer> queue = new PriorityQueue<>(Collections.reverseOrder());
        
        int i;
        for(i = 1; i < heights.length; i++) {
            int heightDiff = heights[i] - heights[i - 1];
            
            if(heightDiff <= 0) {
                continue;
            } 
            
            if(heightDiff <= bricks) {
                bricks -= heightDiff;
                queue.offer(heightDiff);
            } else if(ladders > 0){
                if(!queue.isEmpty() && queue.peek() > heightDiff) { //有且有必要换时
                    bricks += queue.poll();
                    bricks -= heightDiff;
                    queue.offer(heightDiff);
                } 
                ladders--;
            } else {
                break;
            }
        }
        
        return i - 1;
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • 相关阅读:
    Android 播放mp3文件
    有源噪声控制问题讨论
    VS Code使用node.js编译,代码自动补全方法
    点成案例丨温度梯度培养箱在探究温度对植物发芽影响中的应用
    如何在 Windows 10 上安装 Ubuntu 操作系统?
    【数据结构】——优先级队列(堆)
    android中Room数据库的基本使用
    13.前向、反向传播算法
    泛型与Gson解析
    国家加快培育数据要素市场的重要意义是什么
  • 原文地址:https://blog.csdn.net/level_code/article/details/125405843