• 机器学习笔记 - 图解对象检测任务(2)


    一、使用 CNN 进行对象类别检测

    1、分类CNN回顾

    (1)ImageNet图像分类挑战

    (2)AlexNet

    (3)VGG-16

    (4)ResNet

    (5)Squeeze & Excitation

     (6)总结

    二、CNN用于对象检测的直觉

            现代分类架构,如 ResNet 或 Inception,自始至终都使用卷积层
            最后一层没有全连接层
            减少参数数量
            通过空间池化获得特征向量

     

     三、两阶段对象检测网络

            经典对象检测器使用两个阶段:

            1、在图像中提出类不可知区域;2、将区域分类为对象类或背景

            Examples: Faster R-CNN, R-FCN, Mask-RCNN

    1、Faster R-CNN

            第一阶段:区域提议网络(RPN)

            第二阶段:对区域进行分类/回归

            基础网络:VGG16

    2、RPN: Region Proposal Network

     (1)Region Proposal Network

            在特征图上滑动一个小窗口

            滑动窗口的位置提供参考图像的定位信息

            框回归参考这个滑动窗口提供了更精细的定位信息

     (2)Anchors:预定义的候选区域

            在每个位置使用多尺度/尺寸锚点:3 个比例(128^2 , 256^2 , 512^2 )和 3 个纵横比 (2:1, 1:1, 1:2) 产生 9 个锚点

            每个anchor都有自己的预测功能

            单尺度特征,多尺度预测

     (3)Detection process

             正负训练区域

    3、The Spatial Pooling (SP) layer

             空间池化层 (SP) 最大池化给定区域中的卷积特征响应
            这可用于通过重用相同的卷积特征来提取许多特定于区域的特征向量。

             改进:RoIAlign 操作(针对每个提案)

             特定分类和回归

     4、示例和应用

            VGG16 在 ImageNet 上预训练
            在 WIDER 人脸数据集上训练:12,880 张图像和 159,424 张人脸 

    四、一阶段对象检测网络

            区域内置于架构中(卷积层),即没有独立的 RPN

            基于锚,例如 YOLO、SSD、RetinaNet、EfficientDet
            基于点,例如 CornerNet , CenterNet , FCOS

    1、Single Shot MultiBox Detector (SSD)

    2、重大改进

            特征金字塔网络 (FPN)

            Focal Loss

            复制和粘贴增强训练

            无锚网络

    3、特征金字塔网络 (FPN)

            目标检测器必须在广泛的范围内进行分类和定位

    4、Focal Loss

    5、单级检测器示例:RetinaNet

            带有 FPN + 类特定锚点的骨干网(最终检测)

            训练有焦点损失

    6、DetectorRS

    7、Anchorless Single Stage Detector:CornerNet

            将对象检测为配对关键点

            避免需要许多锚点才能与真实检测重叠的问题

            将对象检测为配对关键点 

    8、Single Stage Detector: CenterNet-1

    9、Single Stage Detector: “CenterNet-2” Objects as Points

    10、Single Stage Detector: FCOS: Fully Convolutional One-Stage Object Detection 

            密集监督,相似分割

            在特征金字塔中以适当的比例分配边界框

     11、复制粘贴的数据增强

     12、DETR: End to end object detection using transformer

    五、 Evaluation: Microsoft COCO

  • 相关阅读:
    Windows环境下安装MongoDB数据库
    力扣刷题学习SQL篇——1-10 选择(丢失信息的雇员——合并两个表的相同列union all)
    系统架构师案例分析(真题知识点整理、记忆)
    .NET开源免费的跨平台框架 - MAUI(附学习资料)
    数组与链表算法-矩阵算法
    Unity--URP渲染管线实战教程系列之URP摄像机核心机制剖析
    每日一题~组合总数III
    ChatGPT背后的经济账
    2023大数据挑战赛全国六强团队获奖经验+ppt分享(二)
    SS命令使用介绍
  • 原文地址:https://blog.csdn.net/bashendixie5/article/details/124997116