• ElasticSearch7.3学习(二十八)----聚合实战之电视案例


    一、电视案例

    1.1 数据准备

    创建索引及映射

    建立价格、颜色、品牌、售卖日期 字段

    PUT /tvs
    PUT /tvs/_mapping
    {
      "properties": {
        "price": {
          "type": "long"
        },
        "color": {
          "type": "keyword"
        },
        "brand": {
          "type": "keyword"
        },
        "sold_date": {
          "type": "date"
        }
      }
    }

    插入数据

    POST /tvs/_bulk
    {"index":{}}
    {"price":1000,"color":"红色","brand":"长虹","sold_date":"2019-10-28"}
    {"index":{}}
    {"price":2000,"color":"红色","brand":"长虹","sold_date":"2019-11-05"}
    {"index":{}}
    {"price":3000,"color":"绿色","brand":"小米","sold_date":"2019-05-18"}
    {"index":{}}
    {"price":1500,"color":"蓝色","brand":"TCL","sold_date":"2019-07-02"}
    {"index":{}}
    {"price":1200,"color":"绿色","brand":"TCL","sold_date":"2019-08-19"}
    {"index":{}}
    {"price":2000,"color":"红色","brand":"长虹","sold_date":"2019-11-05"}
    {"index":{}}
    {"price":8000,"color":"红色","brand":"三星","sold_date":"2020-01-01"}
    {"index":{}}
    {"price":2500,"color":"蓝色","brand":"小米","sold_date":"2020-02-12"}

    1.2 统计哪种颜色的电视销量最高

    不加query 默认查询全部

    GET /tvs/_search
    {
      "size": 0,
      "aggs": {
        "popular_colors": {
          "terms": {
            "field": "color"
          }
        }
      }
    }

    查询条件解析

    • size:只获取聚合结果,而不要执行聚合的原始数据
    • aggs:固定语法,要对一份数据执行分组聚合操作
    • popular_colors:就是对每个aggs,都要起一个名字,
    • terms:根据字段的值进行分组
    • field:根据指定的字段的值进行分组

    返回

    {
      "took" : 121,
      "timed_out" : false,
      "_shards" : {
        "total" : 1,
        "successful" : 1,
        "skipped" : 0,
        "failed" : 0
      },
      "hits" : {
        "total" : {
          "value" : 8,
          "relation" : "eq"
        },
        "max_score" : null,
        "hits" : [ ]
      },
      "aggregations" : {
        "popular_colors" : {
          "doc_count_error_upper_bound" : 0,
          "sum_other_doc_count" : 0,
          "buckets" : [
            {
              "key" : "红色",
              "doc_count" : 4
            },
            {
              "key" : "绿色",
              "doc_count" : 2
            },
            {
              "key" : "蓝色",
              "doc_count" : 2
            }
          ]
        }
      }
    }

    返回结果解析

    • hits.hits:我们指定了size是0,所以hits.hits就是空的
    • aggregations:聚合结果
    • popular_color:我们指定的某个聚合的名称
    • buckets:根据我们指定的field划分出的buckets
    • key:每个bucket对应的那个值
    • doc_count:这个bucket分组内,有多少个数量,其实就是这种颜色的销量
    • bucket中的数据的默认的排序规则:按照doc_count降序排序

    1.3 统计每种颜色电视平均价格

    GET /tvs/_search
    {
      "size": 0,
      "aggs": {
        "colors": {
          "terms": {
            "field": "color"
          },
          "aggs": {
            "avg_price": {
              "avg": {
                "field": "price"
              }
            }
          }
        }
      }
    }

    在一个aggs执行的bucket操作(terms),平级的json结构下,再加一个aggs,

    这个第二个aggs内部,同样取个名字,执行一个metric操作,avg,对之前的每个bucket中的数据的指定的field,求一个平均值

    返回:

    {
      "took" : 2,
      "timed_out" : false,
      "_shards" : {
        "total" : 1,
        "successful" : 1,
        "skipped" : 0,
        "failed" : 0
      },
      "hits" : {
        "total" : {
          "value" : 8,
          "relation" : "eq"
        },
        "max_score" : null,
        "hits" : [ ]
      },
      "aggregations" : {
        "colors" : {
          "doc_count_error_upper_bound" : 0,
          "sum_other_doc_count" : 0,
          "buckets" : [
            {
              "key" : "红色",
              "doc_count" : 4,
              "avg_price" : {
                "value" : 3250.0
              }
            },
            {
              "key" : "绿色",
              "doc_count" : 2,
              "avg_price" : {
                "value" : 2100.0
              }
            },
            {
              "key" : "蓝色",
              "doc_count" : 2,
              "avg_price" : {
                "value" : 2000.0
              }
            }
          ]
        }
      }
    }

    返回结果解析:

    • avg_price:我们自己取的metric aggs的名字
    • value:我们的metric计算的结果,每个bucket中的数据的price字段求平均值后的结果

    相当于sql: select avg(price) from tvs group by color

    1.4 每个颜色下,平均价格及每个颜色下,每个品牌的平均价格

    多个子聚合

    GET /tvs/_search
    {
      "size": 0,
      "aggs": {
        "group_by_color": {
          "terms": {
            "field": "color"
          },
          "aggs": {
            "color_avg_price": {
              "avg": {
                "field": "price"
              }
            },
            "group_by_brand": {
              "terms": {
                "field": "brand"
              },
              "aggs": {
                "brand_avg_price": {
                  "avg": {
                    "field": "price"
                  }
                }
              }
            }
          }
        }
      }
    }

    返回

    查看代码
    {
      "took" : 2,
      "timed_out" : false,
      "_shards" : {
        "total" : 1,
        "successful" : 1,
        "skipped" : 0,
        "failed" : 0
      },
      "hits" : {
        "total" : {
          "value" : 8,
          "relation" : "eq"
        },
        "max_score" : null,
        "hits" : [ ]
      },
      "aggregations" : {
        "group_by_color" : {
          "doc_count_error_upper_bound" : 0,
          "sum_other_doc_count" : 0,
          "buckets" : [
            {
              "key" : "红色",
              "doc_count" : 4,
              "color_avg_price" : {
                "value" : 3250.0
              },
              "group_by_brand" : {
                "doc_count_error_upper_bound" : 0,
                "sum_other_doc_count" : 0,
                "buckets" : [
                  {
                    "key" : "长虹",
                    "doc_count" : 3,
                    "brand_avg_price" : {
                      "value" : 1666.6666666666667
                    }
                  },
                  {
                    "key" : "三星",
                    "doc_count" : 1,
                    "brand_avg_price" : {
                      "value" : 8000.0
                    }
                  }
                ]
              }
            },
            {
              "key" : "绿色",
              "doc_count" : 2,
              "color_avg_price" : {
                "value" : 2100.0
              },
              "group_by_brand" : {
                "doc_count_error_upper_bound" : 0,
                "sum_other_doc_count" : 0,
                "buckets" : [
                  {
                    "key" : "TCL",
                    "doc_count" : 1,
                    "brand_avg_price" : {
                      "value" : 1200.0
                    }
                  },
                  {
                    "key" : "小米",
                    "doc_count" : 1,
                    "brand_avg_price" : {
                      "value" : 3000.0
                    }
                  }
                ]
              }
            },
            {
              "key" : "蓝色",
              "doc_count" : 2,
              "color_avg_price" : {
                "value" : 2000.0
              },
              "group_by_brand" : {
                "doc_count_error_upper_bound" : 0,
                "sum_other_doc_count" : 0,
                "buckets" : [
                  {
                    "key" : "TCL",
                    "doc_count" : 1,
                    "brand_avg_price" : {
                      "value" : 1500.0
                    }
                  },
                  {
                    "key" : "小米",
                    "doc_count" : 1,
                    "brand_avg_price" : {
                      "value" : 2500.0
                    }
                  }
                ]
              }
            }
          ]
        }
      }
    }

    1.5 求出每个颜色的销售数量,平均价格、最小价格、最大价格、价格总和

    GET /tvs/_search
    {
      "size": 0,
      "aggs": {
        "colors": {
          "terms": {
            "field": "color"
          },
          "aggs": {
            "color_avg_price": {
              "avg": {
                "field": "price"
              }
            },
            "color_min_price": {
              "min": {
                "field": "price"
              }
            },
            "color_max_price": {
              "max": {
                "field": "price"
              }
            },
            "color_sum_price": {
              "sum": {
                "field": "price"
              }
            }
          }
        }
      }
    }

    返回:

    查看代码
    {
      "took" : 4,
      "timed_out" : false,
      "_shards" : {
        "total" : 1,
        "successful" : 1,
        "skipped" : 0,
        "failed" : 0
      },
      "hits" : {
        "total" : {
          "value" : 8,
          "relation" : "eq"
        },
        "max_score" : null,
        "hits" : [ ]
      },
      "aggregations" : {
        "colors" : {
          "doc_count_error_upper_bound" : 0,
          "sum_other_doc_count" : 0,
          "buckets" : [
            {
              "key" : "红色",
              "doc_count" : 4,
              "color_avg_price" : {
                "value" : 3250.0
              },
              "color_min_price" : {
                "value" : 1000.0
              },
              "color_max_price" : {
                "value" : 8000.0
              },
              "color_sum_price" : {
                "value" : 13000.0
              }
            },
            {
              "key" : "绿色",
              "doc_count" : 2,
              "color_avg_price" : {
                "value" : 2100.0
              },
              "color_min_price" : {
                "value" : 1200.0
              },
              "color_max_price" : {
                "value" : 3000.0
              },
              "color_sum_price" : {
                "value" : 4200.0
              }
            },
            {
              "key" : "蓝色",
              "doc_count" : 2,
              "color_avg_price" : {
                "value" : 2000.0
              },
              "color_min_price" : {
                "value" : 1500.0
              },
              "color_max_price" : {
                "value" : 2500.0
              },
              "color_sum_price" : {
                "value" : 4000.0
              }
            }
          ]
        }
      }
    }

    返回结果解析

    • count:bucket,terms,自动就会有一个doc_count,就相当于是count
    • avg:avg aggs,求平均值
    • max:求一个bucket内,指定field值最大的那个数据
    • min:求一个bucket内,指定field值最小的那个数据
    • sum:求一个bucket内,指定field值的总和

    1.6 划分范围 histogram(直方图),求出价格每2000为一个区间,每个区间的销售总额

    GET /tvs/_search
    {
      "size": 0,
      "aggs": {
        "price": {
          "histogram": {
            "field": "price",
            "interval": 2000
          },
          "aggs": {
            "income": {
              "sum": {
                "field": "price"
              }
            }
          }
        }
      }
    }

    histogram:类似于terms,也是进行bucket分组操作,接收一个field,按照这个field的值的各个范围区间,进行bucket分组操作

    "histogram": {
        "field": "price",
        "interval": 2000
    }

    interval:2000,划分范围,左闭右开区间 ,[0~2000),2000~4000,4000~6000,6000~8000,8000~10000

    bucket有了之后,一样的,去对每个bucket执行avg,count,sum,max,min,等各种metric操作,聚合分析

    1.7 按照日期分组聚合,求出每个月销售个数

    参数解析:

    • date_histogram,按照我们指定的某个date类型的日期field,以及日期interval,按照一定的日期间隔,去划分bucket
    • min_doc_count:即使某个日期interval,2017-01-01~2017-01-31中,一条数据都没有,那么这个区间也是要返回的,不然默认是会过滤掉这个区间的 extended_bounds,
    • min,max:划分bucket的时候,会限定在这个起始日期,和截止日期内
    GET /tvs/_search
    {
       "size" : 0,
       "aggs": {
          "date_sales": {
             "date_histogram": {
                "field": "sold_date",
                "interval": "month", 
                "format": "yyyy-MM-dd",
                "min_doc_count" : 0, 
                "extended_bounds" : { 
                    "min" : "2019-01-01",
                    "max" : "2020-12-31"
                }
             }
          }
       }
    }

    返回

    查看代码
    #! Deprecation: [interval] on [date_histogram] is deprecated, use [fixed_interval] or [calendar_interval] in the future.
    {
      "took" : 11,
      "timed_out" : false,
      "_shards" : {
        "total" : 1,
        "successful" : 1,
        "skipped" : 0,
        "failed" : 0
      },
      "hits" : {
        "total" : {
          "value" : 8,
          "relation" : "eq"
        },
        "max_score" : null,
        "hits" : [ ]
      },
      "aggregations" : {
        "date_sales" : {
          "buckets" : [
            {
              "key_as_string" : "2019-01-01",
              "key" : 1546300800000,
              "doc_count" : 0
            },
            {
              "key_as_string" : "2019-02-01",
              "key" : 1548979200000,
              "doc_count" : 0
            },
            {
              "key_as_string" : "2019-03-01",
              "key" : 1551398400000,
              "doc_count" : 0
            },
            {
              "key_as_string" : "2019-04-01",
              "key" : 1554076800000,
              "doc_count" : 0
            },
            {
              "key_as_string" : "2019-05-01",
              "key" : 1556668800000,
              "doc_count" : 1
            },
            {
              "key_as_string" : "2019-06-01",
              "key" : 1559347200000,
              "doc_count" : 0
            },
            {
              "key_as_string" : "2019-07-01",
              "key" : 1561939200000,
              "doc_count" : 1
            },
            {
              "key_as_string" : "2019-08-01",
              "key" : 1564617600000,
              "doc_count" : 1
            },
            {
              "key_as_string" : "2019-09-01",
              "key" : 1567296000000,
              "doc_count" : 0
            },
            {
              "key_as_string" : "2019-10-01",
              "key" : 1569888000000,
              "doc_count" : 1
            },
            {
              "key_as_string" : "2019-11-01",
              "key" : 1572566400000,
              "doc_count" : 2
            },
            {
              "key_as_string" : "2019-12-01",
              "key" : 1575158400000,
              "doc_count" : 0
            },
            {
              "key_as_string" : "2020-01-01",
              "key" : 1577836800000,
              "doc_count" : 1
            },
            {
              "key_as_string" : "2020-02-01",
              "key" : 1580515200000,
              "doc_count" : 1
            },
            {
              "key_as_string" : "2020-03-01",
              "key" : 1583020800000,
              "doc_count" : 0
            },
            {
              "key_as_string" : "2020-04-01",
              "key" : 1585699200000,
              "doc_count" : 0
            },
            {
              "key_as_string" : "2020-05-01",
              "key" : 1588291200000,
              "doc_count" : 0
            },
            {
              "key_as_string" : "2020-06-01",
              "key" : 1590969600000,
              "doc_count" : 0
            },
            {
              "key_as_string" : "2020-07-01",
              "key" : 1593561600000,
              "doc_count" : 0
            },
            {
              "key_as_string" : "2020-08-01",
              "key" : 1596240000000,
              "doc_count" : 0
            },
            {
              "key_as_string" : "2020-09-01",
              "key" : 1598918400000,
              "doc_count" : 0
            },
            {
              "key_as_string" : "2020-10-01",
              "key" : 1601510400000,
              "doc_count" : 0
            },
            {
              "key_as_string" : "2020-11-01",
              "key" : 1604188800000,
              "doc_count" : 0
            },
            {
              "key_as_string" : "2020-12-01",
              "key" : 1606780800000,
              "doc_count" : 0
            }
          ]
        }
      }
    }

    注意: 

    #! Deprecation: [interval] on [date_histogram] is deprecated, use [fixed_interval] or [calendar_interval] in the future.

    1.8 统计每季度每个品牌的销售额,及每季度的销售总额

    GET /tvs/_search 
    {
      "size": 0,
      "aggs": {
        "group_by_sold_date": {
          "date_histogram": {
            "field": "sold_date",
            "interval": "quarter",
            "format": "yyyy-MM-dd",
            "min_doc_count": 0,
            "extended_bounds": {
              "min": "2019-01-01",
              "max": "2020-12-31"
            }
          },
          "aggs": {
            "group_by_brand": {
              "terms": {
                "field": "brand"
              },
              "aggs": {
                "sum_price": {
                  "sum": {
                    "field": "price"
                  }
                }
              }
            },
            "total_sum_price": {
              "sum": {
                "field": "price"
              }
            }
          }
        }
      }
    }

    返回

    查看代码
    #! Deprecation: [interval] on [date_histogram] is deprecated, use [fixed_interval] or [calendar_interval] in the future.
    {
      "took" : 3,
      "timed_out" : false,
      "_shards" : {
        "total" : 1,
        "successful" : 1,
        "skipped" : 0,
        "failed" : 0
      },
      "hits" : {
        "total" : {
          "value" : 8,
          "relation" : "eq"
        },
        "max_score" : null,
        "hits" : [ ]
      },
      "aggregations" : {
        "group_by_sold_date" : {
          "buckets" : [
            {
              "key_as_string" : "2019-01-01",
              "key" : 1546300800000,
              "doc_count" : 0,
              "total_sum_price" : {
                "value" : 0.0
              },
              "group_by_brand" : {
                "doc_count_error_upper_bound" : 0,
                "sum_other_doc_count" : 0,
                "buckets" : [ ]
              }
            },
            {
              "key_as_string" : "2019-04-01",
              "key" : 1554076800000,
              "doc_count" : 1,
              "total_sum_price" : {
                "value" : 3000.0
              },
              "group_by_brand" : {
                "doc_count_error_upper_bound" : 0,
                "sum_other_doc_count" : 0,
                "buckets" : [
                  {
                    "key" : "小米",
                    "doc_count" : 1,
                    "sum_price" : {
                      "value" : 3000.0
                    }
                  }
                ]
              }
            },
            {
              "key_as_string" : "2019-07-01",
              "key" : 1561939200000,
              "doc_count" : 2,
              "total_sum_price" : {
                "value" : 2700.0
              },
              "group_by_brand" : {
                "doc_count_error_upper_bound" : 0,
                "sum_other_doc_count" : 0,
                "buckets" : [
                  {
                    "key" : "TCL",
                    "doc_count" : 2,
                    "sum_price" : {
                      "value" : 2700.0
                    }
                  }
                ]
              }
            },
            {
              "key_as_string" : "2019-10-01",
              "key" : 1569888000000,
              "doc_count" : 3,
              "total_sum_price" : {
                "value" : 5000.0
              },
              "group_by_brand" : {
                "doc_count_error_upper_bound" : 0,
                "sum_other_doc_count" : 0,
                "buckets" : [
                  {
                    "key" : "长虹",
                    "doc_count" : 3,
                    "sum_price" : {
                      "value" : 5000.0
                    }
                  }
                ]
              }
            },
            {
              "key_as_string" : "2020-01-01",
              "key" : 1577836800000,
              "doc_count" : 2,
              "total_sum_price" : {
                "value" : 10500.0
              },
              "group_by_brand" : {
                "doc_count_error_upper_bound" : 0,
                "sum_other_doc_count" : 0,
                "buckets" : [
                  {
                    "key" : "三星",
                    "doc_count" : 1,
                    "sum_price" : {
                      "value" : 8000.0
                    }
                  },
                  {
                    "key" : "小米",
                    "doc_count" : 1,
                    "sum_price" : {
                      "value" : 2500.0
                    }
                  }
                ]
              }
            },
            {
              "key_as_string" : "2020-04-01",
              "key" : 1585699200000,
              "doc_count" : 0,
              "total_sum_price" : {
                "value" : 0.0
              },
              "group_by_brand" : {
                "doc_count_error_upper_bound" : 0,
                "sum_other_doc_count" : 0,
                "buckets" : [ ]
              }
            },
            {
              "key_as_string" : "2020-07-01",
              "key" : 1593561600000,
              "doc_count" : 0,
              "total_sum_price" : {
                "value" : 0.0
              },
              "group_by_brand" : {
                "doc_count_error_upper_bound" : 0,
                "sum_other_doc_count" : 0,
                "buckets" : [ ]
              }
            },
            {
              "key_as_string" : "2020-10-01",
              "key" : 1601510400000,
              "doc_count" : 0,
              "total_sum_price" : {
                "value" : 0.0
              },
              "group_by_brand" : {
                "doc_count_error_upper_bound" : 0,
                "sum_other_doc_count" : 0,
                "buckets" : [ ]
              }
            }
          ]
        }
      }
    }

    1.9 搜索与聚合结合,查询某个品牌按颜色销量

    搜索与聚合可以结合起来。sql语句如下

    select count(*)
    from tvs
    where brand like "%小米%"
    group by color

    注意:任何的聚合,都必须在搜索出来的结果数据中之行。

    GET /tvs/_search 
    {
      "size": 0,
      "query": {
        "term": {
          "brand": {
            "value": "小米"
          }
        }
      },
      "aggs": {
        "group_by_color": {
          "terms": {
            "field": "color"
          }
        }
      }
    }

    返回

    {
      "took" : 0,
      "timed_out" : false,
      "_shards" : {
        "total" : 1,
        "successful" : 1,
        "skipped" : 0,
        "failed" : 0
      },
      "hits" : {
        "total" : {
          "value" : 2,
          "relation" : "eq"
        },
        "max_score" : null,
        "hits" : [ ]
      },
      "aggregations" : {
        "group_by_color" : {
          "doc_count_error_upper_bound" : 0,
          "sum_other_doc_count" : 0,
          "buckets" : [
            {
              "key" : "绿色",
              "doc_count" : 1
            },
            {
              "key" : "蓝色",
              "doc_count" : 1
            }
          ]
        }
      }
    }

    1.10 global bucket(全局桶):单个品牌与所有品牌销量对比

    GET /tvs/_search 
    {
      "size": 0, 
      "query": {
        "term": {
          "brand": {
            "value": "小米"
          }
        }
      },
      "aggs": {
        "single_brand_avg_price": {
          "avg": {
            "field": "price"
          }
        },
        "all": {
          "global": {},
          "aggs": {
            "all_brand_avg_price": {
              "avg": {
                "field": "price"
              }
            }
          }
        }
      }
    }

    返回

    {
      "took" : 61,
      "timed_out" : false,
      "_shards" : {
        "total" : 1,
        "successful" : 1,
        "skipped" : 0,
        "failed" : 0
      },
      "hits" : {
        "total" : {
          "value" : 2,
          "relation" : "eq"
        },
        "max_score" : null,
        "hits" : [ ]
      },
      "aggregations" : {
        "all" : {
          "doc_count" : 8,
          "all_brand_avg_price" : {
            "value" : 2650.0
          }
        },
        "single_brand_avg_price" : {
          "value" : 2750.0
        }
      }
    }

    返回结果解析:

    • 一个结果,是基于query搜索结果来聚合的;
    • 一个结果,是对所有数据执行聚合的

    1.11 统计价格大于1200的电视平均价格

    注意:单独使用filter 需加上constant_score

    GET /tvs/_search 
    {
      "size": 0,
      "query": {
        "constant_score": {
          "filter": {
            "range": {
              "price": {
                "gte": 1200
              }
            }
          }
        }
      },
      "aggs": {
        "avg_price": {
          "avg": {
            "field": "price"
          }
        }
      }
    }

    返回:

    {
      "took" : 1,
      "timed_out" : false,
      "_shards" : {
        "total" : 1,
        "successful" : 1,
        "skipped" : 0,
        "failed" : 0
      },
      "hits" : {
        "total" : {
          "value" : 7,
          "relation" : "eq"
        },
        "max_score" : null,
        "hits" : [ ]
      },
      "aggregations" : {
        "avg_price" : {
          "value" : 2885.714285714286
        }
      }
    }

    1.12 bucket filter:统计品牌最近4年,3年的平均价格

    注意:因为是最近的时间,所以读者实验的时候,需根据当前时间来自行设置查询范围

    注意下面的区别

    • aggs.filter,针对的是聚合去做的
    • query里面的filter,是全局的,会对所有的数据都有影响
    GET /tvs/_search 
    {
      "size": 0,
      "query": {
        "term": {
          "brand": {
            "value": "小米"
          }
        }
      },
      "aggs": {
        "recent_fouryear": {
          "filter": {
            "range": {
              "sold_date": {
                "gte": "now-4y"
              }
            }
          },
          "aggs": {
            "recent_fouryear_avg_price": {
              "avg": {
                "field": "price"
              }
            }
          }
        },
        "recent_threeyear": {
          "filter": {
            "range": {
              "sold_date": {
                "gte": "now-3y"
              }
            }
          },
          "aggs": {
            "recent_threeyear_avg_price": {
              "avg": {
                "field": "price"
              }
            }
          }
        }
      }
    }

    返回

    {
      "took" : 0,
      "timed_out" : false,
      "_shards" : {
        "total" : 1,
        "successful" : 1,
        "skipped" : 0,
        "failed" : 0
      },
      "hits" : {
        "total" : {
          "value" : 2,
          "relation" : "eq"
        },
        "max_score" : null,
        "hits" : [ ]
      },
      "aggregations" : {
        "recent_threeyear" : {
          "meta" : { },
          "doc_count" : 2,
          "recent_threeyear_avg_price" : {
            "value" : 2750.0
          }
        },
        "recent_fouryear" : {
          "meta" : { },
          "doc_count" : 2,
          "recent_fouryear_avg_price" : {
            "value" : 2750.0
          }
        }
      }
    }

    1.13 按每种颜色的平均销售额降序排序

    GET /tvs/_search 
    {
      "size": 0,
      "aggs": {
        "group_by_color": {
          "terms": {
            "field": "color",
            "order": {
              "avg_price": "desc"
            }
          },
          "aggs": {
            "avg_price": {
              "avg": {
                "field": "price"
              }
            }
          }
        }
      }
    }

    返回:

    {
      "took" : 0,
      "timed_out" : false,
      "_shards" : {
        "total" : 1,
        "successful" : 1,
        "skipped" : 0,
        "failed" : 0
      },
      "hits" : {
        "total" : {
          "value" : 8,
          "relation" : "eq"
        },
        "max_score" : null,
        "hits" : [ ]
      },
      "aggregations" : {
        "group_by_color" : {
          "doc_count_error_upper_bound" : 0,
          "sum_other_doc_count" : 0,
          "buckets" : [
            {
              "key" : "红色",
              "doc_count" : 4,
              "avg_price" : {
                "value" : 3250.0
              }
            },
            {
              "key" : "绿色",
              "doc_count" : 2,
              "avg_price" : {
                "value" : 2100.0
              }
            },
            {
              "key" : "蓝色",
              "doc_count" : 2,
              "avg_price" : {
                "value" : 2000.0
              }
            }
          ]
        }
      }
    }

    1.14 按每种颜色的每种品牌平均销售额降序排序

    GET /tvs/_search    
    {
      "size": 0,
      "aggs": {
        "group_by_color": {
          "terms": {
            "field": "color"
          },
          "aggs": {
            "group_by_brand": {
              "terms": {
                "field": "brand",
                "order": {
                  "avg_price": "desc"
                }
              },
              "aggs": {
                "avg_price": {
                  "avg": {
                    "field": "price"
                  }
                }
              }
            }
          }
        }
      }
    }

    返回

    查看代码
    
    {
      "took" : 1,
      "timed_out" : false,
      "_shards" : {
        "total" : 1,
        "successful" : 1,
        "skipped" : 0,
        "failed" : 0
      },
      "hits" : {
        "total" : {
          "value" : 8,
          "relation" : "eq"
        },
        "max_score" : null,
        "hits" : [ ]
      },
      "aggregations" : {
        "group_by_color" : {
          "doc_count_error_upper_bound" : 0,
          "sum_other_doc_count" : 0,
          "buckets" : [
            {
              "key" : "红色",
              "doc_count" : 4,
              "group_by_brand" : {
                "doc_count_error_upper_bound" : 0,
                "sum_other_doc_count" : 0,
                "buckets" : [
                  {
                    "key" : "三星",
                    "doc_count" : 1,
                    "avg_price" : {
                      "value" : 8000.0
                    }
                  },
                  {
                    "key" : "长虹",
                    "doc_count" : 3,
                    "avg_price" : {
                      "value" : 1666.6666666666667
                    }
                  }
                ]
              }
            },
            {
              "key" : "绿色",
              "doc_count" : 2,
              "group_by_brand" : {
                "doc_count_error_upper_bound" : 0,
                "sum_other_doc_count" : 0,
                "buckets" : [
                  {
                    "key" : "小米",
                    "doc_count" : 1,
                    "avg_price" : {
                      "value" : 3000.0
                    }
                  },
                  {
                    "key" : "TCL",
                    "doc_count" : 1,
                    "avg_price" : {
                      "value" : 1200.0
                    }
                  }
                ]
              }
            },
            {
              "key" : "蓝色",
              "doc_count" : 2,
              "group_by_brand" : {
                "doc_count_error_upper_bound" : 0,
                "sum_other_doc_count" : 0,
                "buckets" : [
                  {
                    "key" : "小米",
                    "doc_count" : 1,
                    "avg_price" : {
                      "value" : 2500.0
                    }
                  },
                  {
                    "key" : "TCL",
                    "doc_count" : 1,
                    "avg_price" : {
                      "value" : 1500.0
                    }
                  }
                ]
              }
            }
          ]
        }
      }
    }

     

     



    如果您觉得阅读本文对您有帮助,请点一下“推荐”按钮,您的“推荐”将是我最大的写作动力!欢迎各位转载,但是未经作者本人同意,转载文章之后必须在文章页面明显位置给出作者和原文连接,否则保留追究法律责任的权利。
  • 相关阅读:
    Python连接MYSQL、SQL Server、Oracle数据入库一网打尽
    Java设计模式之访问者模式(Visitor Pattern)
    Nginx人门详解
    HTTP之Hop-by-hop首部
    算法金 | 10 大必知的自动化机器学习库(Python)
    了解IP地址的基本概念和修改步骤
    软件测试---边界值分析(功能测试)
    阿里内部流传的JDK源码剖析手册,GitHub已获上千万的访问量
    AI问答-ERP:理解 ERP / 我国ERP发展现状 / ERP软件有哪些 / 华为自研ERP
    基于时序分析及约束(1)-时序约束是什么?
  • 原文地址:https://www.cnblogs.com/xiaoyh/p/16264715.html