• GDP与人预期寿命的关系图----R


    单位GDP与寿命的关系统计绘图
    在这里插入图片描述

    library(ggplot2)
    library(gganimate)
    theme_set(theme_bw())
    library(gapminder)
    head(gapminder)
    p <- ggplot(
      gapminder, 
      aes(x = gdpPercap, y=lifeExp, size = pop, colour = country)
    ) +
      geom_point(show.legend = FALSE, alpha = 0.7) +
      scale_color_viridis_d() +
      scale_size(range = c(2, 12)) +
      scale_x_log10() +
      labs(x = "GDP per capital", y = "Life expectancy")
    p
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15

    通过不同州的时间数据进行转换
    在这里插入图片描述

    library(ggplot2)
    library(gganimate)
    theme_set(theme_bw())
    library(gapminder)
    head(gapminder)
    p <- ggplot(
      gapminder, 
      aes(x = gdpPercap, y=lifeExp, size = pop, colour = country)
    ) +
      geom_point(show.legend = FALSE, alpha = 0.7) +
      scale_color_viridis_d() +
      scale_size(range = c(2, 12)) +
      scale_x_log10() +
      labs(x = "GDP per capital", y = "Life expectancy")
    p + transition_time(year) +
      labs(title = "Year: {frame_time}")
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16

    根据不同大洲创建不同面:

    在这里插入图片描述

    library(ggplot2)
    library(gganimate)
    theme_set(theme_bw())
    library(gapminder)
    head(gapminder)
    p <- ggplot(
      gapminder, 
      aes(x = gdpPercap, y=lifeExp, size = pop, colour = country)
    ) +
      geom_point(show.legend = FALSE, alpha = 0.7) +
      scale_color_viridis_d() +
      scale_size(range = c(2, 12)) +
      scale_x_log10() +
      labs(x = "GDP per capital", y = "Life expectancy")
    p + facet_wrap(~continent) +
      transition_time(year) +
      labs(title = "Year: {frame_time}")
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17

    让视图跟着每帧数据变
    在这里插入图片描述

    p + transition_time(year) +
      labs(title = "Year: {frame_time}") +
      view_follow(fixed_y = TRUE)
    
    • 1
    • 2
    • 3

    Show preceding frames with gradual falloff
    This shadow is meant to draw a small wake after data by showing the latest frames up to the current. You can choose to gradually diminish the size and/or opacity of the shadow. The length of the wake is not given in absolute frames as that would make the animation susceptible to changes in the framerate. Instead it is given as a proportion of the total length of the animation.

    在这里插入图片描述Show the original data as background marks
    This shadow lets you show the raw data behind the current frame. Both past and/or future raw data can be shown and styled as you want.

    p + transition_time(year) +
      labs(title = "Year: {frame_time}") +
      shadow_wake(wake_length = 0.1, alpha = FALSE)
    
    • 1
    • 2
    • 3

    在这里插入图片描述
    Reveal data along a given dimension
    This transition allows you to let data gradually appear, based on a given time dimension.

    Static plot

    p + transition_time(year) +
      labs(title = "Year: {frame_time}") +
      shadow_mark(alpha = 0.3, size = 0.5)
    
    • 1
    • 2
    • 3

    在这里插入图片描述
    Let data gradually appear
    Reveal by day (x-axis)

    library(ggplot2)
    library(gganimate)
    theme_set(theme_bw())
    library(gapminder)
    p <- ggplot(
      airquality,
      aes(Day, Temp, group = Month, color = factor(Month))
    ) +
      geom_line() +
      scale_color_viridis_d() +
      labs(x = "Day of Month", y = "Temperature") +
      theme(legend.position = "top")
    p
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13

    在这里插入图片描述
    Show points:

    p + transition_reveal(Day)
    
    • 1

    在这里插入图片描述
    Points can be kept by giving them a unique group:

    p + 
      geom_point() +
      transition_reveal(Day)
    
    • 1
    • 2
    • 3

    在这里插入图片描述
    Transition between several distinct stages of the data
    Create a bar plot of mean temperature:

    p + 
      geom_point(aes(group = seq_along(Day))) +
      transition_reveal(Day)
    
    • 1
    • 2
    • 3

    在这里插入图片描述
    transition_states():

    library(dplyr)
    mean.temp <- airquality %>%
      group_by(Month) %>%
      summarise(Temp = mean(Temp))
    mean.temp
    p <- ggplot(mean.temp, aes(Month, Temp, fill = Temp)) +
      geom_col() +
      scale_fill_distiller(palette = "Reds", direction = 1) +
      theme_minimal() +
      theme(
        panel.grid = element_blank(),
        panel.grid.major.y = element_line(color = "white"),
        panel.ontop = TRUE
      )
    p
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15

    在这里插入图片描述

    library(dplyr)
    mean.temp <- airquality %>%
      group_by(Month) %>%
      summarise(Temp = mean(Temp))
    mean.temp
    p <- ggplot(mean.temp, aes(Month, Temp, fill = Temp)) +
      geom_col() +
      scale_fill_distiller(palette = "Reds", direction = 1) +
      theme_minimal() +
      theme(
        panel.grid = element_blank(),
        panel.grid.major.y = element_line(color = "white"),
        panel.ontop = TRUE
      )
    p + transition_states(Month, wrap = FALSE) +
      shadow_mark()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16

    enter_grow() + enter_fade()

    在这里插入图片描述

    p + transition_states(Month, wrap = FALSE) +
      shadow_mark() +
      enter_grow() +
      enter_fade()
    
    • 1
    • 2
    • 3
    • 4

    参考资料:

    https://www.datanovia.com/en/blog/gganimate-how-to-create-plots-with-beautiful-animation-in-r/
    https://cloud.tencent.com/developer/article/1675209
    TED:https://www.ted.com/talks/hans_rosling_the_best_stats_you_ve_ever_seenlanguage=zh-TW

  • 相关阅读:
    2022-08-05:以下go语言代码输出什么?A:65, string;B:A, string;C:65, int;D:报错。
    英文面试问题TOP30和参考回答
    webUI自动化之基本框架搭建(python + selenium + unittest)
    C++STL详解(三)list的使用及其模拟实现
    OREPA:阿里提出训练也很快的重参数策略,内存减半,速度加倍 | CVPR 2022
    新版 Ubuntu 中 gnome-terminal 可恶的行间距问题逼我退回了 Ubuntu 20.04
    Spring MVC(中)
    MySQL——创建视图的注意事项
    无服务器+域名也能搭建个人博客?真的,而且很快
    float浮动布局大战position定位布局
  • 原文地址:https://blog.csdn.net/a10534126/article/details/124774668