• GDP与人预期寿命的关系图----R


    单位GDP与寿命的关系统计绘图
    在这里插入图片描述

    library(ggplot2)
    library(gganimate)
    theme_set(theme_bw())
    library(gapminder)
    head(gapminder)
    p <- ggplot(
      gapminder, 
      aes(x = gdpPercap, y=lifeExp, size = pop, colour = country)
    ) +
      geom_point(show.legend = FALSE, alpha = 0.7) +
      scale_color_viridis_d() +
      scale_size(range = c(2, 12)) +
      scale_x_log10() +
      labs(x = "GDP per capital", y = "Life expectancy")
    p
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15

    通过不同州的时间数据进行转换
    在这里插入图片描述

    library(ggplot2)
    library(gganimate)
    theme_set(theme_bw())
    library(gapminder)
    head(gapminder)
    p <- ggplot(
      gapminder, 
      aes(x = gdpPercap, y=lifeExp, size = pop, colour = country)
    ) +
      geom_point(show.legend = FALSE, alpha = 0.7) +
      scale_color_viridis_d() +
      scale_size(range = c(2, 12)) +
      scale_x_log10() +
      labs(x = "GDP per capital", y = "Life expectancy")
    p + transition_time(year) +
      labs(title = "Year: {frame_time}")
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16

    根据不同大洲创建不同面:

    在这里插入图片描述

    library(ggplot2)
    library(gganimate)
    theme_set(theme_bw())
    library(gapminder)
    head(gapminder)
    p <- ggplot(
      gapminder, 
      aes(x = gdpPercap, y=lifeExp, size = pop, colour = country)
    ) +
      geom_point(show.legend = FALSE, alpha = 0.7) +
      scale_color_viridis_d() +
      scale_size(range = c(2, 12)) +
      scale_x_log10() +
      labs(x = "GDP per capital", y = "Life expectancy")
    p + facet_wrap(~continent) +
      transition_time(year) +
      labs(title = "Year: {frame_time}")
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17

    让视图跟着每帧数据变
    在这里插入图片描述

    p + transition_time(year) +
      labs(title = "Year: {frame_time}") +
      view_follow(fixed_y = TRUE)
    
    • 1
    • 2
    • 3

    Show preceding frames with gradual falloff
    This shadow is meant to draw a small wake after data by showing the latest frames up to the current. You can choose to gradually diminish the size and/or opacity of the shadow. The length of the wake is not given in absolute frames as that would make the animation susceptible to changes in the framerate. Instead it is given as a proportion of the total length of the animation.

    在这里插入图片描述Show the original data as background marks
    This shadow lets you show the raw data behind the current frame. Both past and/or future raw data can be shown and styled as you want.

    p + transition_time(year) +
      labs(title = "Year: {frame_time}") +
      shadow_wake(wake_length = 0.1, alpha = FALSE)
    
    • 1
    • 2
    • 3

    在这里插入图片描述
    Reveal data along a given dimension
    This transition allows you to let data gradually appear, based on a given time dimension.

    Static plot

    p + transition_time(year) +
      labs(title = "Year: {frame_time}") +
      shadow_mark(alpha = 0.3, size = 0.5)
    
    • 1
    • 2
    • 3

    在这里插入图片描述
    Let data gradually appear
    Reveal by day (x-axis)

    library(ggplot2)
    library(gganimate)
    theme_set(theme_bw())
    library(gapminder)
    p <- ggplot(
      airquality,
      aes(Day, Temp, group = Month, color = factor(Month))
    ) +
      geom_line() +
      scale_color_viridis_d() +
      labs(x = "Day of Month", y = "Temperature") +
      theme(legend.position = "top")
    p
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13

    在这里插入图片描述
    Show points:

    p + transition_reveal(Day)
    
    • 1

    在这里插入图片描述
    Points can be kept by giving them a unique group:

    p + 
      geom_point() +
      transition_reveal(Day)
    
    • 1
    • 2
    • 3

    在这里插入图片描述
    Transition between several distinct stages of the data
    Create a bar plot of mean temperature:

    p + 
      geom_point(aes(group = seq_along(Day))) +
      transition_reveal(Day)
    
    • 1
    • 2
    • 3

    在这里插入图片描述
    transition_states():

    library(dplyr)
    mean.temp <- airquality %>%
      group_by(Month) %>%
      summarise(Temp = mean(Temp))
    mean.temp
    p <- ggplot(mean.temp, aes(Month, Temp, fill = Temp)) +
      geom_col() +
      scale_fill_distiller(palette = "Reds", direction = 1) +
      theme_minimal() +
      theme(
        panel.grid = element_blank(),
        panel.grid.major.y = element_line(color = "white"),
        panel.ontop = TRUE
      )
    p
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15

    在这里插入图片描述

    library(dplyr)
    mean.temp <- airquality %>%
      group_by(Month) %>%
      summarise(Temp = mean(Temp))
    mean.temp
    p <- ggplot(mean.temp, aes(Month, Temp, fill = Temp)) +
      geom_col() +
      scale_fill_distiller(palette = "Reds", direction = 1) +
      theme_minimal() +
      theme(
        panel.grid = element_blank(),
        panel.grid.major.y = element_line(color = "white"),
        panel.ontop = TRUE
      )
    p + transition_states(Month, wrap = FALSE) +
      shadow_mark()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16

    enter_grow() + enter_fade()

    在这里插入图片描述

    p + transition_states(Month, wrap = FALSE) +
      shadow_mark() +
      enter_grow() +
      enter_fade()
    
    • 1
    • 2
    • 3
    • 4

    参考资料:

    https://www.datanovia.com/en/blog/gganimate-how-to-create-plots-with-beautiful-animation-in-r/
    https://cloud.tencent.com/developer/article/1675209
    TED:https://www.ted.com/talks/hans_rosling_the_best_stats_you_ve_ever_seenlanguage=zh-TW

  • 相关阅读:
    【PyTorch】深度学习实践之反向传播 Back Propagation
    【ES常用查询】基于ElasticsearchRestTemplate及NativeSearchQuery的查询
    Linux基本指令及周边(第一弹)
    软件工程与计算总结(二十二)软件开发过程模型
    深度学习在图像处理中的应用学习笔记
    【无标题】
    赴日开发工程师工作怎么找?
    js将html网页转换成PDF并解决了图表文字被切割的问题
    3.Bean的作用域与生命周期
    关于A-level选课的6个建议
  • 原文地址:https://blog.csdn.net/a10534126/article/details/124774668