• 【SVM分类】基于matlab粒子群算法优化SVM分类【含Matlab源码 1859期】


    一、粒子群算法优化支持向量机简介

    1 SVM
    SVM是监督学习中最有影响力的方法之一。其基本模型是定义在空间上最大间隔的线性分类器,由于其遵循经验风险与置信风险之和最小化(即结构风险)原理,因此SVM泛化能力强。SVM学习策略是使间隔最大化,对于已知数据集:T={(x1,y1),(x2,y2),……(xn,yn)}其中,xi属于Rn,yi属于{+1,-1},i=1,2,…N,xi为第i个特征向量,yi为类标记。如若yi>0,则xi属于正类,若yi<0,则xi属于负类。可形式化为凸二次规划问题:
    在这里插入图片描述
    其中,ξ为松弛变量,w为超平面权系数向量,b是偏移量,C是惩罚参数。引入拉格朗日乘子法,得到最优分类决策函数。
    在这里插入图片描述
    本文取径向基核函数为:
    在这里插入图片描述
    其中ai为拉格朗日乘子,K(x,xi)本文取径向基核函数,式(3)中g为核函数参数。核函数参数g的取值对样本划分精细程度有重要影响,g越小,低维空间中选择的曲线越复杂,容易出现过拟合;反之分类结果粒度越粗从而欠拟合。惩罚因子C的取值综合考虑了经验风险与结构风险,C越大,经验风险越小,结构风险越大,容易出现过拟合;C越小,经验风险越大结构风险越小。从而出现欠拟合。由此可见,惩罚因子C与核函数参数g的取值对支持向量机的结果精度有着至关重要的作用。

    二、部分源代码

    
    
    • 1

    三、运行结果

    在这里插入图片描述
    在这里插入图片描述

    四、matlab版本及参考文献

    1 matlab版本
    2014a

    2 参考文献
    [1] 包子阳,余继周,杨杉.智能优化算法及其MATLAB实例(第2版)[M].电子工业出版社,2016.
    [2]张岩,吴水根.MATLAB优化算法源代码[M].清华大学出版社,2017.
    [3]周品.MATLAB 神经网络设计与应用[M].清华大学出版社,2013.
    [4]陈明.MATLAB神经网络原理与实例精解[M].清华大学出版社,2013.
    [5]方清城.MATLAB R2016a神经网络设计与应用28个案例分析[M].清华大学出版社,2018.
    [6]张沫,郑慧峰,倪豪,王月兵,郭成成.基于遗传算法优化支持向量机的超声图像缺陷分类[J].计量学报. 2019,40(05)

  • 相关阅读:
    Ansible自动化运维工具(一)安装及模块
    python3内置全局函数
    1658.将x减到0的最小操作数(滑动窗口)
    Redis发布订阅和数据类型
    vue3中实现监听dom
    OTA语音芯片NV040C在智能电动牙刷的应用
    HTML5中的document.visibilityState
    linux学习(4)—— 在linux系统上安装软件
    JVM加载机制
    JavaScript学习——什么是编程语言?计算机基础
  • 原文地址:https://blog.csdn.net/TIQCmatlab/article/details/124903017