• kube-scheduler源码分析(1)-初始化与启动分析


    kube-scheduler源码分析(1)-初始化与启动分析

    kube-scheduler简介

    kube-scheduler组件是kubernetes中的核心组件之一,主要负责pod资源对象的调度工作,具体来说,kube-scheduler组件负责根据调度算法(包括预选算法和优选算法)将未调度的pod调度到合适的最优的node节点上。

    kube-scheduler架构图

    kube-scheduler的大致组成和处理流程如下图,kube-scheduler对pod、node等对象进行了list/watch,根据informer将未调度的pod放入待调度pod队列,并根据informer构建调度器cache(用于快速获取需要的node等对象),然后sched.scheduleOne方法为kube-scheduler组件调度pod的核心处理逻辑所在,从未调度pod队列中取出一个pod,经过预选与优选算法,最终选出一个最优node,然后更新cache并异步执行bind操作,也就是更新pod的nodeName字段,至此一个pod的调度工作完成。

    kube-scheduler组件的分析将分为两大块进行,分别是:
    (1)kube-scheduler初始化与启动分析;
    (2)kube-scheduler核心处理逻辑分析。

    本篇先进行kube-scheduler组件的初始化与启动分析,下篇再进行核心处理逻辑分析。

    1.kube-scheduler初始化与启动分析

    基于tag v1.17.4

    https://github.com/kubernetes/kubernetes/releases/tag/v1.17.4

    直接看到kube-scheduler的NewSchedulerCommand函数,作为kube-scheduler初始化与启动分析的入口。

    NewSchedulerCommand

    NewSchedulerCommand函数主要逻辑:
    (1)初始化组件默认启动参数值;
    (2)定义kube-scheduler组件的运行命令方法,即runCommand函数(runCommand函数最终调用Run函数来运行启动kube-scheduler组件,下面会进行Run函数的分析);
    (3)kube-scheduler组件启动命令行参数解析。

    // cmd/kube-scheduler/app/server.go
    func NewSchedulerCommand(registryOptions ...Option) *cobra.Command {
        // 1.初始化组件默认启动参数值
        opts, err := options.NewOptions()
    	if err != nil {
    		klog.Fatalf("unable to initialize command options: %v", err)
    	}
    	
    	// 2.定义kube-scheduler组件的运行命令方法,即runCommand函数
    	cmd := &cobra.Command{
    		Use: "kube-scheduler",
    		Long: `The Kubernetes scheduler is a policy-rich, topology-aware,
    workload-specific function that significantly impacts availability, performance,
    and capacity. The scheduler needs to take into account individual and collective
    resource requirements, quality of service requirements, hardware/software/policy
    constraints, affinity and anti-affinity specifications, data locality, inter-workload
    interference, deadlines, and so on. Workload-specific requirements will be exposed
    through the API as necessary.`,
    		Run: func(cmd *cobra.Command, args []string) {
    			if err := runCommand(cmd, args, opts, registryOptions...); err != nil {
    				fmt.Fprintf(os.Stderr, "%v\n", err)
    				os.Exit(1)
    			}
    		},
    	}
    	
    	// 3.组件命令行启动参数解析
    	fs := cmd.Flags()
    	namedFlagSets := opts.Flags()
    	verflag.AddFlags(namedFlagSets.FlagSet("global"))
    	globalflag.AddGlobalFlags(namedFlagSets.FlagSet("global"), cmd.Name())
    	for _, f := range namedFlagSets.FlagSets {
    		fs.AddFlagSet(f)
    	}
    	...
    }
    

    runCommand

    runCommand定义了kube-scheduler组件的运行命令函数,主要看到以下两个逻辑:
    (1)调用algorithmprovider.ApplyFeatureGates方法,根据FeatureGate是否开启,决定是否追加注册相应的预选和优选算法;
    (2)调用Run,运行启动kube-scheduler组件。

    // cmd/kube-scheduler/app/server.go
    // runCommand runs the scheduler.
    func runCommand(cmd *cobra.Command, args []string, opts *options.Options, registryOptions ...Option) error {
    	...
    
    	// Apply algorithms based on feature gates.
    	// TODO: make configurable?
    	algorithmprovider.ApplyFeatureGates()
    
    	// Configz registration.
    	if cz, err := configz.New("componentconfig"); err == nil {
    		cz.Set(cc.ComponentConfig)
    	} else {
    		return fmt.Errorf("unable to register configz: %s", err)
    	}
    
    	ctx, cancel := context.WithCancel(context.Background())
    	defer cancel()
    
    	return Run(ctx, cc, registryOptions...)
    }
    

    1.1 algorithmprovider.ApplyFeatureGates

    根据FeatureGate是否开启,决定是否追加注册相应的预选和优选算法。

    // pkg/scheduler/algorithmprovider/plugins.go
    import (
    	"k8s.io/kubernetes/pkg/scheduler/algorithmprovider/defaults"
    )
    
    func ApplyFeatureGates() func() {
    	return defaults.ApplyFeatureGates()
    }
    

    1.1.1 init

    plugins.go文件import了defaults包,所以看defaults.ApplyFeatureGates方法之前,先来看到defaults包的init函数,主要做了内置调度算法的注册工作,包括预选算法和优选算法。

    (1)先来看到defaults包中defaults.go文件init函数。

    // pkg/scheduler/algorithmprovider/defaults/defaults.go
    func init() {
    	registerAlgorithmProvider(defaultPredicates(), defaultPriorities())
    }
    

    预算算法:

    // pkg/scheduler/algorithmprovider/defaults/defaults.go
    func defaultPredicates() sets.String {
    	return sets.NewString(
    		predicates.NoVolumeZoneConflictPred,
    		predicates.MaxEBSVolumeCountPred,
    		predicates.MaxGCEPDVolumeCountPred,
    		predicates.MaxAzureDiskVolumeCountPred,
    		predicates.MaxCSIVolumeCountPred,
    		predicates.MatchInterPodAffinityPred,
    		predicates.NoDiskConflictPred,
    		predicates.GeneralPred,
    		predicates.PodToleratesNodeTaintsPred,
    		predicates.CheckVolumeBindingPred,
    		predicates.CheckNodeUnschedulablePred,
    	)
    }
    

    优选算法:

    // pkg/scheduler/algorithmprovider/defaults/defaults.go
    func defaultPriorities() sets.String {
    	return sets.NewString(
    		priorities.SelectorSpreadPriority,
    		priorities.InterPodAffinityPriority,
    		priorities.LeastRequestedPriority,
    		priorities.BalancedResourceAllocation,
    		priorities.NodePreferAvoidPodsPriority,
    		priorities.NodeAffinityPriority,
    		priorities.TaintTolerationPriority,
    		priorities.ImageLocalityPriority,
    	)
    }
    

    registerAlgorithmProvider函数注册 algorithm provider,algorithm provider存储了所有类型的调度算法列表,包括预选算法和优选算法(只存储了算法key列表,不包含算法本身)。

    // pkg/scheduler/algorithmprovider/defaults/defaults.go
    func registerAlgorithmProvider(predSet, priSet sets.String) {
    	// Registers algorithm providers. By default we use 'DefaultProvider', but user can specify one to be used
    	// by specifying flag.
    	scheduler.RegisterAlgorithmProvider(scheduler.DefaultProvider, predSet, priSet)
    	// Cluster autoscaler friendly scheduling algorithm.
    	scheduler.RegisterAlgorithmProvider(ClusterAutoscalerProvider, predSet,
    		copyAndReplace(priSet, priorities.LeastRequestedPriority, priorities.MostRequestedPriority))
    }
    

    最终将注册的algorithm provider赋值给变量algorithmProviderMap(存储了所有类型的调度算法列表),该变量是该包的全局变量。

    // pkg/scheduler/algorithm_factory.go
    // RegisterAlgorithmProvider registers a new algorithm provider with the algorithm registry.
    func RegisterAlgorithmProvider(name string, predicateKeys, priorityKeys sets.String) string {
    	schedulerFactoryMutex.Lock()
    	defer schedulerFactoryMutex.Unlock()
    	validateAlgorithmNameOrDie(name)
    	algorithmProviderMap[name] = AlgorithmProviderConfig{
    		FitPredicateKeys:     predicateKeys,
    		PriorityFunctionKeys: priorityKeys,
    	}
    	return name
    }
    
    // pkg/scheduler/algorithm_factory.go
    var (
    	...
    	algorithmProviderMap   = make(map[string]AlgorithmProviderConfig)
    	...
    )
    

    (2)再来看到defaults包中register_predicates.go文件的init函数,主要是注册了预选算法。

    // pkg/scheduler/algorithmprovider/defaults/register_predicates.go
    func init() {
        ...
        // Fit is defined based on the absence of port conflicts.
    	// This predicate is actually a default predicate, because it is invoked from
    	// predicates.GeneralPredicates()
    	scheduler.RegisterFitPredicate(predicates.PodFitsHostPortsPred, predicates.PodFitsHostPorts)
    	// Fit is determined by resource availability.
    	// This predicate is actually a default predicate, because it is invoked from
    	// predicates.GeneralPredicates()
    	scheduler.RegisterFitPredicate(predicates.PodFitsResourcesPred, predicates.PodFitsResources)
    	...
    

    (3)最后看到defaults包中register_priorities.go文件的init函数,主要是注册了优选算法。

    // pkg/scheduler/algorithmprovider/defaults/register_priorities.go
    func init() {
        ...
        // Prioritize nodes by least requested utilization.
    	scheduler.RegisterPriorityMapReduceFunction(priorities.LeastRequestedPriority, priorities.LeastRequestedPriorityMap, nil, 1)
    
    	// Prioritizes nodes to help achieve balanced resource usage
    	scheduler.RegisterPriorityMapReduceFunction(priorities.BalancedResourceAllocation, priorities.BalancedResourceAllocationMap, nil, 1)
        ...
    }
    

    预选算法与优选算法注册的最后结果,都是赋值给全局变量,预选算法注册后赋值给fitPredicateMap,优选算法注册后赋值给priorityFunctionMap。

    // pkg/scheduler/algorithm_factory.go
    var (
    	...
    	fitPredicateMap        = make(map[string]FitPredicateFactory)
    	...
    	priorityFunctionMap    = make(map[string]PriorityConfigFactory)
    	...
    )
    

    1.1.2 defaults.ApplyFeatureGates

    主要用于判断是否开启特定的FeatureGate,然后追加注册相应的预选和优选算法。

    // pkg/scheduler/algorithmprovider/defaults/defaults.go
    func ApplyFeatureGates() (restore func()) {
    	...
    
    	// Only register EvenPodsSpread predicate & priority if the feature is enabled
    	if utilfeature.DefaultFeatureGate.Enabled(features.EvenPodsSpread) {
    		klog.Infof("Registering EvenPodsSpread predicate and priority function")
    		// register predicate
    		scheduler.InsertPredicateKeyToAlgorithmProviderMap(predicates.EvenPodsSpreadPred)
    		scheduler.RegisterFitPredicate(predicates.EvenPodsSpreadPred, predicates.EvenPodsSpreadPredicate)
    		// register priority
    		scheduler.InsertPriorityKeyToAlgorithmProviderMap(priorities.EvenPodsSpreadPriority)
    		scheduler.RegisterPriorityMapReduceFunction(
    			priorities.EvenPodsSpreadPriority,
    			priorities.CalculateEvenPodsSpreadPriorityMap,
    			priorities.CalculateEvenPodsSpreadPriorityReduce,
    			1,
    		)
    	}
    
    	// Prioritizes nodes that satisfy pod's resource limits
    	if utilfeature.DefaultFeatureGate.Enabled(features.ResourceLimitsPriorityFunction) {
    		klog.Infof("Registering resourcelimits priority function")
    		scheduler.RegisterPriorityMapReduceFunction(priorities.ResourceLimitsPriority, priorities.ResourceLimitsPriorityMap, nil, 1)
    		// Register the priority function to specific provider too.
    		scheduler.InsertPriorityKeyToAlgorithmProviderMap(scheduler.RegisterPriorityMapReduceFunction(priorities.ResourceLimitsPriority, priorities.ResourceLimitsPriorityMap, nil, 1))
    	}
    
    	...
    }
    

    1.2 Run

    Run函数主要是根据配置参数,运行启动kube-scheduler组件,其核心逻辑如下:
    (1)准备好event上报client,用于将kube-scheduler产生的各种event上报给api-server;
    (2)调用scheduler.New方法,实例化scheduler对象;
    (3)启动event上报管理器;
    (4)设置kube-scheduler组件的健康检查,并启动健康检查以及与metrics相关的http服务;
    (5)启动所有前面注册过的对象的infomer,开始同步对象资源;
    (6)调用WaitForCacheSync,等待所有informer的对象同步完成,使得本地缓存数据与etcd中的数据一致;
    (7)根据组件启动参数判断是否要开启leader选举功能;
    (8)调用sched.Run方法启动kube-scheduler组件(sched.Run将作为下面kube-scheduler核心处理逻辑分析的入口)。

    // cmd/kube-scheduler/app/server.go
    func Run(ctx context.Context, cc schedulerserverconfig.CompletedConfig, outOfTreeRegistryOptions ...Option) error {
    	// To help debugging, immediately log version
    	klog.V(1).Infof("Starting Kubernetes Scheduler version %+v", version.Get())
    
    	outOfTreeRegistry := make(framework.Registry)
    	for _, option := range outOfTreeRegistryOptions {
    		if err := option(outOfTreeRegistry); err != nil {
    			return err
    		}
    	}
        
        // 1.准备好event上报client,用于将kube-scheduler产生的各种event上报给api-server
    	// Prepare event clients.
    	if _, err := cc.Client.Discovery().ServerResourcesForGroupVersion(eventsv1beta1.SchemeGroupVersion.String()); err == nil {
    		cc.Broadcaster = events.NewBroadcaster(&events.EventSinkImpl{Interface: cc.EventClient.Events("")})
    		cc.Recorder = cc.Broadcaster.NewRecorder(scheme.Scheme, cc.ComponentConfig.SchedulerName)
    	} else {
    		recorder := cc.CoreBroadcaster.NewRecorder(scheme.Scheme, v1.EventSource{Component: cc.ComponentConfig.SchedulerName})
    		cc.Recorder = record.NewEventRecorderAdapter(recorder)
    	}
        
        // 2.调用scheduler.New方法,实例化scheduler对象
    	// Create the scheduler.
    	sched, err := scheduler.New(cc.Client,
    		cc.InformerFactory,
    		cc.PodInformer,
    		cc.Recorder,
    		ctx.Done(),
    		scheduler.WithName(cc.ComponentConfig.SchedulerName),
    		scheduler.WithAlgorithmSource(cc.ComponentConfig.AlgorithmSource),
    		scheduler.WithHardPodAffinitySymmetricWeight(cc.ComponentConfig.HardPodAffinitySymmetricWeight),
    		scheduler.WithPreemptionDisabled(cc.ComponentConfig.DisablePreemption),
    		scheduler.WithPercentageOfNodesToScore(cc.ComponentConfig.PercentageOfNodesToScore),
    		scheduler.WithBindTimeoutSeconds(cc.ComponentConfig.BindTimeoutSeconds),
    		scheduler.WithFrameworkOutOfTreeRegistry(outOfTreeRegistry),
    		scheduler.WithFrameworkPlugins(cc.ComponentConfig.Plugins),
    		scheduler.WithFrameworkPluginConfig(cc.ComponentConfig.PluginConfig),
    		scheduler.WithPodMaxBackoffSeconds(cc.ComponentConfig.PodMaxBackoffSeconds),
    		scheduler.WithPodInitialBackoffSeconds(cc.ComponentConfig.PodInitialBackoffSeconds),
    	)
    	if err != nil {
    		return err
    	}
        
        // 3.启动event上报管理器
    	// Prepare the event broadcaster.
    	if cc.Broadcaster != nil && cc.EventClient != nil {
    		cc.Broadcaster.StartRecordingToSink(ctx.Done())
    	}
    	if cc.CoreBroadcaster != nil && cc.CoreEventClient != nil {
    		cc.CoreBroadcaster.StartRecordingToSink(&corev1.EventSinkImpl{Interface: cc.CoreEventClient.Events("")})
    	}
    	
    	// 4.设置kube-scheduler组件的健康检查,并启动健康检查以及与metrics相关的http服务
    	// Setup healthz checks.
    	var checks []healthz.HealthChecker
    	if cc.ComponentConfig.LeaderElection.LeaderElect {
    		checks = append(checks, cc.LeaderElection.WatchDog)
    	}
    
    	// Start up the healthz server.
    	if cc.InsecureServing != nil {
    		separateMetrics := cc.InsecureMetricsServing != nil
    		handler := buildHandlerChain(newHealthzHandler(&cc.ComponentConfig, separateMetrics, checks...), nil, nil)
    		if err := cc.InsecureServing.Serve(handler, 0, ctx.Done()); err != nil {
    			return fmt.Errorf("failed to start healthz server: %v", err)
    		}
    	}
    	if cc.InsecureMetricsServing != nil {
    		handler := buildHandlerChain(newMetricsHandler(&cc.ComponentConfig), nil, nil)
    		if err := cc.InsecureMetricsServing.Serve(handler, 0, ctx.Done()); err != nil {
    			return fmt.Errorf("failed to start metrics server: %v", err)
    		}
    	}
    	if cc.SecureServing != nil {
    		handler := buildHandlerChain(newHealthzHandler(&cc.ComponentConfig, false, checks...), cc.Authentication.Authenticator, cc.Authorization.Authorizer)
    		// TODO: handle stoppedCh returned by c.SecureServing.Serve
    		if _, err := cc.SecureServing.Serve(handler, 0, ctx.Done()); err != nil {
    			// fail early for secure handlers, removing the old error loop from above
    			return fmt.Errorf("failed to start secure server: %v", err)
    		}
    	}
        
        // 5.启动所有前面注册过的对象的informer,开始同步对象资源
    	// Start all informers.
    	go cc.PodInformer.Informer().Run(ctx.Done())
    	cc.InformerFactory.Start(ctx.Done())
        
        // 6.等待所有informer的对象同步完成,使得本地缓存数据与etcd中的数据一致
    	// Wait for all caches to sync before scheduling.
    	cc.InformerFactory.WaitForCacheSync(ctx.Done())
        
        // 7.根据组件启动参数判断是否要开启leader选举功能
    	// If leader election is enabled, runCommand via LeaderElector until done and exit.
    	if cc.LeaderElection != nil {
    		cc.LeaderElection.Callbacks = leaderelection.LeaderCallbacks{
    			OnStartedLeading: sched.Run,
    			OnStoppedLeading: func() {
    				klog.Fatalf("leaderelection lost")
    			},
    		}
    		leaderElector, err := leaderelection.NewLeaderElector(*cc.LeaderElection)
    		if err != nil {
    			return fmt.Errorf("couldn't create leader elector: %v", err)
    		}
    
    		leaderElector.Run(ctx)
    
    		return fmt.Errorf("lost lease")
    	}
        
        // 8.调用sched.Run方法启动kube-scheduler组件
    	// Leader election is disabled, so runCommand inline until done.
    	sched.Run(ctx)
    	return fmt.Errorf("finished without leader elect")
    }
    

    1.2.1 scheduler.New

    scheduler对象的实例化分为3个部分,分别是:
    (1)实例化pod、node、pvc、pv等对象的infomer;
    (2)调用configurator.CreateFromConfig,根据前面注册的内置调度算法(或根据用户提供的调度策略),实例化scheduler;
    (3)给infomer对象注册eventHandler;

    // pkg/scheduler/scheduler.go
    func New(client clientset.Interface,
    	informerFactory informers.SharedInformerFactory,
    	podInformer coreinformers.PodInformer,
    	recorder events.EventRecorder,
    	stopCh <-chan struct{},
    	opts ...Option) (*Scheduler, error) {
    
    	stopEverything := stopCh
    	if stopEverything == nil {
    		stopEverything = wait.NeverStop
    	}
    
    	options := defaultSchedulerOptions
    	for _, opt := range opts {
    		opt(&options)
    	}
        
        // 1.实例化node、pvc、pv等对象的infomer
    	schedulerCache := internalcache.New(30*time.Second, stopEverything)
    	volumeBinder := volumebinder.NewVolumeBinder(
    		client,
    		informerFactory.Core().V1().Nodes(),
    		informerFactory.Storage().V1().CSINodes(),
    		informerFactory.Core().V1().PersistentVolumeClaims(),
    		informerFactory.Core().V1().PersistentVolumes(),
    		informerFactory.Storage().V1().StorageClasses(),
    		time.Duration(options.bindTimeoutSeconds)*time.Second,
    	)
    
    	registry := options.frameworkDefaultRegistry
    	if registry == nil {
    		registry = frameworkplugins.NewDefaultRegistry(&frameworkplugins.RegistryArgs{
    			VolumeBinder: volumeBinder,
    		})
    	}
    	registry.Merge(options.frameworkOutOfTreeRegistry)
    
    	snapshot := nodeinfosnapshot.NewEmptySnapshot()
    
    	configurator := &Configurator{
    		client:                         client,
    		informerFactory:                informerFactory,
    		podInformer:                    podInformer,
    		volumeBinder:                   volumeBinder,
    		schedulerCache:                 schedulerCache,
    		StopEverything:                 stopEverything,
    		hardPodAffinitySymmetricWeight: options.hardPodAffinitySymmetricWeight,
    		disablePreemption:              options.disablePreemption,
    		percentageOfNodesToScore:       options.percentageOfNodesToScore,
    		bindTimeoutSeconds:             options.bindTimeoutSeconds,
    		podInitialBackoffSeconds:       options.podInitialBackoffSeconds,
    		podMaxBackoffSeconds:           options.podMaxBackoffSeconds,
    		enableNonPreempting:            utilfeature.DefaultFeatureGate.Enabled(kubefeatures.NonPreemptingPriority),
    		registry:                       registry,
    		plugins:                        options.frameworkPlugins,
    		pluginConfig:                   options.frameworkPluginConfig,
    		pluginConfigProducerRegistry:   options.frameworkConfigProducerRegistry,
    		nodeInfoSnapshot:               snapshot,
    		algorithmFactoryArgs: AlgorithmFactoryArgs{
    			SharedLister:                   snapshot,
    			InformerFactory:                informerFactory,
    			VolumeBinder:                   volumeBinder,
    			HardPodAffinitySymmetricWeight: options.hardPodAffinitySymmetricWeight,
    		},
    		configProducerArgs: &frameworkplugins.ConfigProducerArgs{},
    	}
    
    	metrics.Register()
        
        // 2.调用configurator.CreateFromConfig,根据前面注册的内置调度算法(或根据用户提供的调度策略),实例化scheduler
    	var sched *Scheduler
    	source := options.schedulerAlgorithmSource
    	switch {
    	case source.Provider != nil:
    		// Create the config from a named algorithm provider.
    		sc, err := configurator.CreateFromProvider(*source.Provider)
    		if err != nil {
    			return nil, fmt.Errorf("couldn't create scheduler using provider %q: %v", *source.Provider, err)
    		}
    		sched = sc
    	case source.Policy != nil:
    		// Create the config from a user specified policy source.
    		policy := &schedulerapi.Policy{}
    		switch {
    		case source.Policy.File != nil:
    			if err := initPolicyFromFile(source.Policy.File.Path, policy); err != nil {
    				return nil, err
    			}
    		case source.Policy.ConfigMap != nil:
    			if err := initPolicyFromConfigMap(client, source.Policy.ConfigMap, policy); err != nil {
    				return nil, err
    			}
    		}
    		sc, err := configurator.CreateFromConfig(*policy)
    		if err != nil {
    			return nil, fmt.Errorf("couldn't create scheduler from policy: %v", err)
    		}
    		sched = sc
    	default:
    		return nil, fmt.Errorf("unsupported algorithm source: %v", source)
    	}
    	// Additional tweaks to the config produced by the configurator.
    	sched.Recorder = recorder
    	sched.DisablePreemption = options.disablePreemption
    	sched.StopEverything = stopEverything
    	sched.podConditionUpdater = &podConditionUpdaterImpl{client}
    	sched.podPreemptor = &podPreemptorImpl{client}
    	sched.scheduledPodsHasSynced = podInformer.Informer().HasSynced
        
        // 3.给infomer对象注册eventHandler
    	AddAllEventHandlers(sched, options.schedulerName, informerFactory, podInformer)
    	return sched, nil
    }
    
    

    总结

    kube-scheduler简介

    kube-scheduler组件是kubernetes中的核心组件之一,主要负责pod资源对象的调度工作,具体来说,kube-scheduler组件负责根据调度算法(包括预选算法和优选算法)将未调度的pod调度到合适的最优的node节点上。

    kube-scheduler架构图

    kube-scheduler的大致组成和处理流程如下图,kube-scheduler对pod、node等对象进行了list/watch,根据informer将未调度的pod放入待调度pod队列,并根据informer构建调度器cache(用于快速获取需要的node等对象),然后sched.scheduleOne方法为kube-scheduler组件调度pod的核心处理逻辑所在,从未调度pod队列中取出一个pod,经过预选与优选算法,最终选出一个最优node,然后更新cache并异步执行bind操作,也就是更新pod的nodeName字段,至此一个pod的调度工作完成。

    kube-scheduler初始化与启动分析流程图

  • 相关阅读:
    C++容器之unordered_map、unordered_set的底层剖析
    lenovo联想台式机 拯救者 刃7000-28ICBR(90KX)原装出厂Windows10系统镜像
    HarmonyOS元服务实现今天吃什么
    Kubernetes的原理及应用详解(三)
    DeFi 前景展望:概览主流 DeFi 协议 Q2 进展
    线上bug-接口速度慢
    最长不下降子序列
    DOM对非表单元素与表单元素的属性操作
    2.1万字,30张图详解操作系统常见面试题(收藏版)
    Unity之Hololens开发如何实现UI交互
  • 原文地址:https://www.cnblogs.com/lianngkyle/p/15914981.html