技术背景
量子计算作为一种新的计算框架,采用了以超导、离子阱等物理体系的新语言来描述我们传统中所理解的矩阵运算。不同于传统计算机中的比特(经典比特)表示方法,量子计算的基本单元被称为量子比特。我们可以通过一个布洛赫球的模型来理解二者的区别:
传统比特用高电平和低电平来表示一个经典比特的1态和0态,分别对应于布洛赫球模型的南极点和北极点。这是经典比特所能够表示的信息,相当于球表面的两个点,而一个量子比特所能够表示的信息,是整个球的表面(球体内部的点在特定体系下也能够取到,一般我们只取球的表面来表示量子比特的信息)。除了两个极点所表示的信息,与经典比特所表示的信息一致之外,其他的布洛赫球表面的点,表示的是量子力学中所特有的叠加态
。也就是说,一个量子比特不仅仅可以表示0态和1态,还可以用一个概率分布来表示0态和1态的叠加态:qstate=P(state=0)⋅0+P(state=1)⋅1
除了通过叠加态扩展了表示空间之外,量子计算还可以通过量子纠缠的特性,来制造非矩阵乘积态。举个比较通俗的例子来说,如果我们抛两枚硬币到地上,得到的结果,就是两个硬币各自状态的矩阵乘积态:[正面,反面]⊗[正面,反面]=[正面正面,正面反面,反面正面,反面反面]
量子比特与量子操作
前面我们提到,量子比特可以表示为0态和1态的一个叠加态,那么就不能用一个元素来表示了,我们可以一个量子态表述为:
因为p0和p1分别表示的是取得0态与1态的概率,那么从线性叠加的角度来考虑,我们必须把0态和1态定义成矢量形式(基矢)的狄拉克符号:
基于这两个基矢,我们可以重写单量子比特的量子态的形式:
通常情况下,如果是一个归一化的量子态(纯态),有:
这同时也告诉我们,p0的本质意义其实是取得0态的概率的开根号(也就是概率幅),并非取得0态的概率,这个表述可能会导致一些疑惑,但是这样也是为了告诉大家叠加态与概率的关系。。表示完单量子比特的信息,我们同样可以推理一下多量子比特信息的表示,比如两量子比特和三量子比特的量子态表示:
从这个表示形式中,我们也可以看出,一个n量子比特的量子计算机所能够表示的信息,是2n的空间,是指数级别上升的。所以一般认为,当量子计算机发展到50个完美量子比特以上时,就会真正意义上的实现量子优越性。
这里插一段话,讲述一个不太经常被提到的,虽然不是很难,但是有可能让人感到迷惑的问题:给定的布洛赫球,实际上有三个坐标轴,为什么所表述的信息是2n,而不是3n次方?我们再回顾一下单量子比特的表达形式:
公式中的i表示虚数单位,而这两个复数中所附带的相位,就是那一条缺失的坐标轴。但是,为什么这一个维度被“忽略”了呢?这一点其实跟硬件实现有关,在后面我们要提到的量子测量的模块中,一般只针对一个轴进行测量,制造坍缩的量子态,这就使得实际上只有两个轴向的操作会影响到最终的结果。但是我们又必须同时具备这三个轴,因为最终用于执行量子测量的轴,有可能是三个轴的某个叠加的位置(比如x=y=z这条直线)。
在完成了量子比特的定义之后,我们需要定义一些基础的量子比特的操作,就类似于经典比特的逻辑门操作(与门、非门、与或门等等)。先从单个量子比特开始,我们首先回顾一下单位矩阵三个泡利矩阵:
单位矩阵我们都可以理解,就是保持量子态不变。而通过这些基础的泡利矩阵,我们可以用R−iθM,M=σX,σY,σZ去构造一些列绕X,Y,Z轴旋转的单比特旋转矩阵。我们可以把这些旋转矩阵的形式列出来,首先回顾一下指数矩阵的泰勒级数展开:
将矩阵−iθM代入其中可以得到:
这便得到了将量子比特绕三个绕XYZ轴旋转的旋转矩阵。特殊地,在很多算法中都会使用到这样的一个单量子比特操作:Hadamard门,其定义为:
一般很少被提到,Hadamard门操作的几何意义,就是将一个量子比特绕X-Z的角平分线旋转180度。另外还有相位角量子门操作的形式:
当相位角取得π时,相位角等价于σZ。而相位门跟e−iθσZ的不同之处在于,e−iθσZ是分别对0态和1态的相位进行旋转,最后再进行叠加,而相位门是固定了0态的位置而旋转1态的相位,最终再进行叠加。从量子态上来看,二者实际上是等价的:
根据以上的单比特门,加上一个双比特门,理论上就可以构成任意比特数的等效量子逻辑门,一般常用的两比特量子逻辑门是CNOT门,也叫CX门,其矩阵形式如下所示:
通过Hadamard门与CX门,就可以构建一个两比特的纠缠态:Bell State,我们可以用IBM的Composer(参考链接3)来演示一下:
从左下角的概率分布结果,我们就可以了解到最终的量子态为:√22|00⟩+√22|11⟩,这一点也可以从量子逻辑门操作来进行简单的分析,首先看下第一个量子比特作用Hadamard门的结果:
此时两个量子比特没有作用过两比特门,因此还是矩阵乘积态:
此时再作用一个CX门,得到最终的量子态:
这样,就完成了一个完全纠缠态的制备。制备完成后,对其中的任意一个量子比特进行测量,如果得到的结果是0态,那么另一个量子比特结果必然也是0态。除了CX门,还有另外一个有可能被经常使用到的两比特量子门是Swap门,顾名思义,就是交换两个量子比特的信息,其矩阵形式为:
从矩阵元素上就可以看出其物理图像,Swap的本质操作是交换作用的两个量子比特的概率幅,因为|00⟩和|11⟩态本身就具备对称关系,因此只需要交换|01⟩和|10⟩这两个量子态的振幅即可,因此只有矩阵中间的两个元素进行了交换。
总结概要
量子计算是一门当下非常火热的技术,抛开个别企业对量子计算的过分吹嘘不谈,其本身是一门非常有意义的跨学科研究领域。本文仅从非物理科班专业的角度——用矩阵的语言去描述量子计算的基础单元和基础操作,包含量子态的含义、单比特量子门操作以及两比特量子门操作的矩阵形式。并且附带一定的物理图像,这一点其实非常重要,如果不断的推导公式,最终有可能迷失了其物理图像,这就脱离了我们做研究的初衷。
版权声明
本文首发链接为:https://www.cnblogs.com/dechinphy/p/quantum-base.html
作者ID:DechinPhy
更多原著文章请参考:https://www.cnblogs.com/dechinphy/
打赏专用链接:https://www.cnblogs.com/dechinphy/gallery/image/379634.html
腾讯云专栏同步:https://cloud.tencent.com/developer/column/91958
参考文献
- Quantum Computational Chemistry. Sam McArdle, Suguru Endo and other co-authors.
- The Basics of Quantum Computing for Chemists. Daniel Claudino.
- https://quantum-computing.ibm.com/composer/
- https://www.quantum-inspire.com/kbase/rz-gate/