• 买卖股票的最佳时机系列问题


    作者:Grey

    原文地址:买卖股票的最佳时机系列问题

    LeetCode 121. 买卖股票的最佳时机#

    主要思路:因为只有一股可以交易,所以我们可以枚举必须以i位置作为卖出时机的情况下,得到的最大收益是多少。如果我们得到每个i位置的最大收益,那么最大收益必是所有位置的最大收益的最大值

    使用两个变量:

    min变量:表示遍历到的位置之前的最小值是什么。

    max变量:表示当前收集到必须以i位置卖出的最大收益是多少。

    遍历数组一遍,在遍历到i位置的时候,minmax的更新逻辑如下:

    min = Math.min(arr[i], min); // 每次遍历到的arr[i]和全局min进行比较,看能否刷新min的值
    max = Math.max(arr[i] - min, max); // arr[i] - min 表示必须以i位置卖出时候的最大收益是什么,和全局的max值pk的最大值赋予max
    

    遍历完数组,返回max的值就是最终答案。完整代码见:

    public class LeetCode_0121_BestTimeToBuyAndSellStock {
        public int maxProfit(int[] arr) {
            int max = 0;
            int min = arr[0];
            for (int i = 1; i < arr.length; i++) {
                min = Math.min(arr[i], min);
                max = Math.max(arr[i] - min, max);
            }
            return max;
        }
    }
    

    LeetCode 122. 买卖股票的最佳时机 II#

    主要思路:由于可以进行任意次的交易,但是任何时候最多只能持有一股股票,所以我们可以把股票曲线的所有上升段都抓取到,累加收益就是最大收益。遍历数组,遍历到的位置减去前一个位置的值,如果是正数,就收集,如果是负数,就把本次收益置为0(就等于没有做这次交易),这样遍历一遍数组,就不会错过所有的收益。

    设置一个变量max,初始为0,用于收集最大收益值,来到i位置,max更新逻辑如下:

    max += Math.max((prices[i] - prices[i - 1]), 0);
    

    完整代码如下:

    public int maxProfit(int[] prices) {
       int max = 0;
       for (int i = 1; i < prices.length; i++) {
            // 把所有上坡都给抓到
            max += Math.max((prices[i] - prices[i - 1]), 0);
       }
       return max;
    }
    

    由本题可以简单得出一个结论:如果数组元素个数为N,则最多执行N/2次交易就可以抓取所有的上升段的值(极端情况下,当前时刻买,下一个时刻卖,保持这样的交易一直到最后,执行的交易次数就是N/2

    LeetCode 188. 买卖股票的最佳时机 IV#

    主要思路:

    1. 如果k的值大于等于数组长度的二分之一,就等于有无限次交易,在这样的情况下,可以直接用问题二的解法来做。
    2. 如果k的值小于数组长度的二分之一,就需要单独考虑了。

    在第2种情况下,我们定义

    int[][] dp = new int[N][k+1]
    

    其中dp[i][j]表示[0...i]范围内交易j次获得的最大收益是多少。如果可以把dp这个二维表填好,那么返回dp[N-1][k]的值就是题目要的答案。

    dp这个二维矩阵中,

    第一行的值表示数组[0..0]范围内,交易若干次的最大收益,显然,都是0。

    第一列的值表示数组[0...i]范围内,交易0次获得的最大收益,显然,也都是0。

    针对任何一个普遍位置dp[i][j]的值,

    我们可以枚举i位置是否参与交易,如果i位置不参与交易,那么dp[i][j] = dp[i-1][j],如果i位置参与交易,那么i位置一定是最后一次的卖出时机。

    那最后一次买入的时机,可以是如下情况:

    最后一次买入的时机在i位置,那么dp[i][j] = dp[i][j-1] - arr[i] + arr[i]

    最后一次买入的时机在i-1位置,那么dp[i][j] = dp[i-1][j-1] - arr[i-1] + arr[i]

    最后一次买入的时机在i-2位置,那么dp[i][j] = dp[i-2][j-1] - arr[i-2] + arr[i]

    ...

    最后一次买入的时机在0位置,那么dp[i][j] = dp[0][j-1] - arr[0] + arr[i]

    // i位置不参与交易,则dp[i][j]至少是dp[i-1][j]
    dp[i][j] = dp[i - 1][j];
    for (int m = 0; m <= i; m++) {
        // 枚举每次买入的时机
        dp[i][j] = Math.max(dp[m][j - 1] - arr[m] + arr[i] , dp[i][j]);
    }
    

    完整代码如下:

    public class LeetCode_0188_BestTimeToBuyAndSellStockIV {
        public static int maxProfit(int k, int[] arr) {
            if (arr == null || arr.length < 2) {
                return 0;
            }
            int N = arr.length;
            if (k >= N >> 1) {
                return infinityMax(arr);
            }
            int[][] dp = new int[N][k + 1];
            for (int i = 1; i < N; i++) {
                for (int j = 1; j <= k; j++) {
                    // i位置不参与交易,则dp[i][j]至少是dp[i-1][j]
                    dp[i][j] = dp[i - 1][j];
                    for (int m = 0; m <= i; m++) {
                        // 枚举每次买入的时机
                        dp[i][j] = Math.max(dp[m][j - 1] - arr[m] + arr[i], dp[i][j]);
                    }
                }
            }
            return dp[N - 1][k];
        }
    
    
        public static int infinityMax(int[] arr) {
            int ans = 0;
            for (int i = 1; i < arr.length; i++) {
                ans += Math.max(arr[i] - arr[i - 1], 0);
            }
            return ans;
        }
    }
    
    
    

    上述代码中包含一个枚举行为

    dp[i][j] = dp[i - 1][j] + arr[i] - arr[i];
    for (int m = 0; m <= i; m++) {
       // 枚举每次买入的时机
       dp[i][j] = Math.max(dp[m][j - 1] - arr[m] + arr[i], dp[i][j]);
    }
    

    增加了时间复杂度,我们可以优化这个枚举。

    我们可以举一个具体的例子来说明如何优化,

    比如,

    当我们求dp[5][3]这个值,我们可以枚举5位置是否参与交易,假设5位置不参与交易,那么dp[5][3] = dp[4][3],假设5位置参与交易,那么5位置一定是最后一次的卖出时机。那最后一次买入的时机,可以是如下情况:

    最后一次买入的时机在5位置,那么dp[5][3] = dp[5][2] - arr[5] + arr[5]

    最后一次买入的时机在4位置,那么dp[5][3] = dp[4][2] - arr[4] + arr[5]

    最后一次买入的时机在3位置,那么dp[5][3] = dp[3][2] - arr[3] + arr[5]

    最后一次买入的时机在2位置,那么dp[5][3] = dp[2][2] - arr[2] + arr[5]

    最后一次买入的时机在1位置,那么dp[5][3] = dp[1][2] - arr[1] + arr[5]

    最后一次买入的时机在0位置,那么dp[5][3] = dp[0][2] - arr[0] + arr[5]

    我们求dp[4][3]这个值,我们可以枚举4位置是否参与交易,假设4位置不参与交易,那么dp[4][3] = dp[3][3],假设4位置参与交易,那么4位置一定是最后一次的卖出时机。那最后一次买入的时机,可以是如下情况:

    最后一次买入的时机在4位置,那么dp[4][3] = dp[4][2] - arr[4] + arr[4]

    最后一次买入的时机在3位置,那么dp[4][3] = dp[3][2] - arr[3] + arr[4]

    最后一次买入的时机在2位置,那么dp[4][3] = dp[2][2] - arr[2] + arr[4]

    最后一次买入的时机在1位置,那么dp[4][3] = dp[1][2] - arr[1] + arr[4]

    最后一次买入的时机在0位置,那么dp[4][3] = dp[0][2] - arr[0] + arr[4]

    比较dp[5][3]dp[4][3]的依赖关系,可以得到如下结论:

    假设在求dp[4][3]的过程中,以下递推式的最大值我们可以得到

    dp[4][2] - arr[4]

    dp[3][2] - arr[3]

    dp[2][2] - arr[2]

    dp[1][2] - arr[1]

    dp[0][2] - arr[0]

    我们把以上式子的最大值定义为best,那么

    dp[5][3] = Math.max(dp[4][3],Math.max(dp[5][2] - arr[5] + arr[5], best + arr[5]))

    所以dp[5][3]可以由dp[4][3]加速得到,

    同理,

    dp[4][3]可以通过dp[3][3]加速得到,

    dp[3][3]可以通过dp[2][3]加速得到,

    dp[2][3]可以通过dp[1][3]加速得到,

    dp[1][3]可以很简单得出,dp[1][3]有如下几种可能性:

    可能性1,1位置完全不参与,则

    int p1 = dp[0][3]
    

    可能性2,1位置作为最后一次的卖出时机,买入时机是1位置

    int p2 = dp[1][2] + arr[1] - arr[1]
    

    可能性3,1位置作为最后一次的卖出时机,买入时机是0位置

    int p3 = dp[0][2] + arr[1] - arr[0]
    

    此时,best的值为

    int best = Math.max(p2 - arr[1], p3 - arr[1])
    

    然后通过dp[1][3]加速dp[2][3],通过dp[2][3]加速dp[3][3]......,所以二维dp的填写方式是按列填,

    先填dp[1][0]dp[1][2]一直到dp[1][k],填好第一列;

    然后填dp[2][0],dp[2][1]一直到dp[2][k],填好第二列;

    ...

    依次填好每一列,直到填完第N-1列。

    枚举行为被优化,优化枚举后的完整代码如下:

    public class LeetCode_0188_BestTimeToBuyAndSellStockIV {
    
        public static int maxProfit(int k, int[] arr) {
            if (arr == null || arr.length < 2) {
                return 0;
            }
            int N = arr.length;
            if (k >= N >> 1) {
                return infinityMax(arr);
            }
            int[][] dp = new int[N][k + 1];
            for (int j = 1; j <= k; j++) {
                int p1 = dp[0][j];
                int best = Math.max(dp[1][j - 1] - arr[1], dp[0][j - 1] - arr[0]);
                dp[1][j] = Math.max(p1, best + arr[1]);
                for (int i = 2; i < N; i++) {
                    p1 = dp[i - 1][j];
                    best = Math.max(dp[i][j - 1] - arr[i], best);
                    dp[i][j] = Math.max(p1, best + arr[i]);
                }
            }
            return dp[N - 1][k];
        }
    
        public static int infinityMax(int[] arr) {
            int ans = 0;
            for (int i = 1; i < arr.length; i++) {
                ans += Math.max(arr[i] - arr[i - 1], 0);
            }
            return ans;
        }
    }
    

    LeetCode 123. 买卖股票的最佳时机 III#

    主要思路:上一个问题中,令k=2就是本题的答案。

    LeetCode 309. 最佳买卖股票时机含冷冻期#

    主要思路:因为有了冷冻期,所以每个位置的状态有如下三种:

    1. 冷冻期

    2. 持有股票

    3. 不持有股票,不在冷冻期

    定义三个数组,分别表示i位置这三种情况下的最大值是多少

    // 处于冷冻期
    int[] cooldown = new int[N];
    // 持有股票
    int[] withStock = new int[N];
    // 不持有股票,也不处于冷冻期
    int[] noStock = new int[N];
    

    显然有如下结论:

    // 0位置需要处于冷冻期,说明0位置买了又卖掉,收益是0
    cooldown[0] = 0; 
    // 0位置需要持有股票,只有可能在0位置买了一股,这个时候收益为0-arr[0]
    withStock[0] = -arr[0];
    // 0位置没有股票,也不在冷冻期,说明在0位置就没有做任何决策。此时收益也是0
    noStock[0] = 0;
    

    针对一个普遍位置i

    // 如果i位置要处于冷冻期,那么前一个位置必须持有股票,且在当前位置卖掉,处于cooldown状态
    cooldown[i] = withStock[i - 1] + arr[i];
    // 如果i位置要持有股票,那么前一个位置可以持有股票,到当前位置不做决策,或者前一个位置没有股票,当前位置买入一股
    withStock[i] = Math.max(withStock[i - 1], noStock[i - 1] - arr[i]);
    // 如果i位置没有股票,那么前一个位置可能也没股票,或者前一个位置是冷冻期,到当前位置也没有进行买入动作
    noStock[i] = Math.max(noStock[i - 1], cooldown[i - 1]);
    

    最大收益就是如上三种方式的最大值。完整代码见:

    public class LeetCode_0309_BestTimeToBuyAndSellStockWithCooldown {
        public static int maxProfit(int[] arr) {
            if (arr.length < 2) {
                return 0;
            }
            int N = arr.length;
            // 处于冷冻期
            int[] cooldown = new int[N];
            // 持有股票
            int[] withStock = new int[N];
            // 不持有股票,也不处于冷冻期
            int[] noStock = new int[N];
            cooldown[0] = 0;
            withStock[0] = -arr[0];
            noStock[0] = 0;
            for (int i = 1; i < arr.length; i++) {
                withStock[i] = Math.max(withStock[i - 1], noStock[i - 1] - arr[i]);
                cooldown[i] = withStock[i - 1] + arr[i];
                noStock[i] = Math.max(noStock[i - 1], cooldown[i - 1]);
            }
            return Math.max(cooldown[N - 1], Math.max(withStock[N - 1], noStock[N - 1]));
        }
    }
    
    

    由于三个数组有递推关系,所以可以用三个变量替换三个数组,做空间压缩,优化后的代码如下:

    public class LeetCode_0309_BestTimeToBuyAndSellStockWithCooldown {
       
        // 空间压缩版本
        public static int maxProfit(int[] arr) {
            if (arr.length < 2) {
                return 0;
            }
            // 处于冷冻期
            int cooldown = 0;
            // 持有股票
            int withStock = -arr[0];
            // 不持有股票,也不处于冷冻期
            int noStock = 0;
    
            for (int i = 1; i < arr.length; i++) {
                int next1 = Math.max(withStock, noStock - arr[i]);
                int next2 = withStock + arr[i];
                int next3 = Math.max(noStock, cooldown);
                withStock = next1;
                cooldown = next2;
                noStock = next3;
            }
            return Math.max(cooldown, Math.max(withStock, noStock));
        }
    }
    

    LeetCode 714. 买卖股票的最佳时机含手续费#

    主要思路:由于没有冷冻期,所以在i位置的时候,状态只有两种

    // withStock[i]表示:i位置有股票的状态下,最大收益
    int[] withStock = new int[arr.length];
    // noStock[i]表示:i位置没有股票的状态下,最大收益
    int[] noStock = new int[arr.length];
    

    针对0位置

    // 0位置持有股票,最大收益,只可能是0位置买入一股
    withStock[0] = -arr[0];
    // 0位置不持有股票,最大收益,只能是0位置不做交易,收益为0,如果0位置做交易,收益就是(0 - arr[i] + arr[i] - fee),显然小于0
    noStock[0] = 0;
    

    针对普遍位置i

    // i位置需要有股票,说明i位置的股票可以是i-1位置到现在不交易获得的,也可以是i-1位置没有股票,买下当前这一股获得的
    withStock[i] = Math.max(withStock[i - 1], noStock[i - 1] - arr[i]);
    // i位置没有股票,说明i位置的股票可以由i-1位置上有股票的状态到当前位置卖出一股(含手续费),也可以是沿用上一个位置没有股票的最大收益
    noStock[i] = Math.max(withStock[i - 1] + arr[i] - fee, noStock[i - 1]);
    

    完整代码如下:

    public class LeetCode_0714_BestTimeToBuyAndSellStockWithTransactionFee {
        public static int maxProfit1(int[] arr, int fee) {
            if (arr.length < 2) {
                return 0;
            }
            int[] withStock = new int[arr.length];
            int[] noStock = new int[arr.length];
            // 持有股票
            withStock[0] = -arr[0];
            // 不持有股票
            noStock[0] = 0;
            for (int i = 1; i < arr.length; i++) {
                withStock[i] = Math.max(withStock[i - 1], noStock[i - 1] - arr[i]);
                noStock[i] = Math.max(withStock[i - 1] + arr[i] - fee, noStock[i - 1]);
            }
            return Math.max(withStock[arr.length - 1], noStock[arr.length - 1]);
        }
    }
    

    同样的,两个数组都有递推关系,可以做空间压缩,简化后的代码如下:

    public class LeetCode_0714_BestTimeToBuyAndSellStockWithTransactionFee {
    
        public static int maxProfit(int[] arr, int fee) {
            if (arr.length < 2) {
                return 0;
            }
            // 持有股票
            int withStock = -arr[0];
            // 不持有股票
            int noStock = 0;
            for (int i = 1; i < arr.length; i++) {
                int next1 = Math.max(withStock, noStock - arr[i]);
                int next3 = Math.max(withStock + arr[i] - fee, noStock);
                withStock = next1;
                noStock = next3;
            }
            return Math.max(withStock, noStock);
        }
    }
    

    更多#

    算法和数据结构笔记

    参考资料#

    算法和数据结构体系班-左程云

  • 相关阅读:
    npm常用命令
    web前端网页设计期末课程大作业:旅游网页主题网站设计——三亚旅游网页设计(6个页面) HTML+CSS+JavaScript
    【云原生系列】Docker学习
    Zotero——一款文献管理工具
    LT6211UX是用于VR和Display应用的HDMI2.0到LVDS转换器
    ArcGIS土地利用动态度与土地利用程度计算(附练习数据下载)
    前端知识记录
    SiliconCloud上新:GLM-4-9B,通用能力超越Llama 3
    【MySQL库的操作】
    机器学习-感知机模型
  • 原文地址:https://www.cnblogs.com/greyzeng/p/16182420.html