所得基本原理是为了达到一个目的;就是让所有线程都能看到某种标记。synchronized通过在对象头中设置标记实现了这一目的,是一种JVM原生的锁实现方式。而ReentrantLock以及所有的基于Lock接口的实现类,都是通过一个volitile修饰的int型变量,并保证每个线程都能拥有对该int的可见性和原子性修改,其本质都是基于AQS框架。
AQS(AbstractQueuedSynchronizer类)是一个用来构建所和同步器的框架,各种的Lock包中的锁(常用的有 ReentrantLock、ReadWriteLock),以及其他的如Semaphore、CountDownLatch,甚至是早期的FutureTask等等,都是基于AQS来构建。
ReentrantLock 是Lock的实现类,是一个互斥的同步锁。
从功能的角度上ReentrantLock比synchronized同步操作更加精细,甚至实现synchronized没有高级功能,例如
从锁释放酵素synchronized在JVM层面上实现的,不但可以通过一些监控工具监控synchronized的锁定,而且在代码执行出现异常的时候,JVM会自动释放锁定;但是使用Lock则不行,Lock是通过代码实现的,要保证锁定一定会被释放,就必须将unLock()放到finally()代码中。
从性能角度上来讲,Synchronized早期实现的比较低效,对比ReentrantLock,大多数的使用场景性能都较差。但是Java 6中对其进行了很多的改进,在竞争不激烈的时候,synchronized 的性能要优于 ReentrantLock;在高竞争的情况下,synchronized的性能会下降几十倍,但是ReentrantLock的性能则不变。
ReentrantLock内部自定义了同步器Sync(Sync即实现了AQS,又实现了AOS,而AOS提供了一种互斥锁持有的方式)也就是在加锁的时候使用了CAS算法,将线程对象放入到一个双向链表中,每次获取锁的时候,看一下当前维护的是那个线程ID和当前请求的线程ID是否一样,如果一样就可以获取到锁,如果不一样就无法获取到锁。
通常所说的并发包(JUC)也就是java.util.concurrent 及其子包,集中了Java并发的各种基础工具类,具体主要包括几个方面:
虽然ReentrantLock和synchronized使用简单,但是实现行为上有一定的局限性,要么不占,要么独占。实际应用场景中。有时候不需要大量竞争的写操作,而是以并发读取为主,为了进一步优化并发操作的粒度,Java提供了读写锁。
读写锁基于的原理是多个读操作不需要互斥,如果读锁试图锁定时,写锁是被某个线程持有,读锁将无法获取,而只好等待对方操作结束,这样就可以自动保证不会读取到有争议的数据。
ReadWriteLock代表了一对锁,下图是一个基于读写锁实现的数据结构,当数据量较大,并发读多,并发写少的时候。能够比纯同步版本凸显出优势。
读写锁看起来比synchronized的粒度似乎更细一些,但在实际应用中,其表现也不是太好。主要还是因为相对比较大的开销。
所以JDK在后期又引入了StampedLock,在提供类似读写锁的同时,还支持优化读模式,优化读基于假设,大多数情况下读操作并不会和写操作冲突,其逻辑是先试着修改,然后通过validate方法确认是否进行写模式,如果没有进入,就成功避免了开销;如果进入,则尝试获取读锁。
JUC中的同步器三个主要成员:CountDownLatch、CyclicBarrier和Semaphore,通过它们可以方便的实现很多线程之间的协助功能。CountDownLatch叫倒计数,允许一个或者多个线程等待某些操作完成。
用法:CountDownLatch 构造方法指明计数数量,被等待线程调用countDown 将计数器减1,等待线程使用await进行线程等待。
CyclicBarrier 叫做循环栅栏,它实现让一组线程等待至某个状态之后再全部同时执行,而且当所有等待线程被释放之后,CyclicBarrier可以被重复使用。CyclicBarrier比较典型的应用场景是用来等待并发线程结束。
主要方法是await(),await()每被调用一次,计数则会减少1,并且阻塞当前线程。当计数器减至0 的时候,阻塞解除,所有在此CyclicBarrier上阻塞的线程开始运行。
这之后,如果再次调用await(),计数就会变成n-1,新一轮重新开始,这便是Cyclic的含义,CyclicBarrier.await()带有返回值。用来表示当前线程是第一个到达这个Barrier的线程
Semaphore ,Java版本的信号量实现,用于控制同时访问的线程个数,来达到限制通用资源访问的目的,其原理通过acquire()获取一个许可,如果没有就等待,而release()释放一个许可。
如果、Semaphore 的数值被初始化为1,那么一个线程就可以通过acquire进入互斥状态,本质上和互斥锁是非常相似的。但是区别也非常明显,比如互斥锁是持有者的,而对于Semaphore 这种计数器结构,虽然有类似功能,但其实不存在真正意义上的持有者,除非进行扩展包装。
首先它们的行为有相似度,主要区别如下