ControlNet是一个稳定扩散模型,可以复制构图和人体姿势。ControlNet解决了生成想要的确切姿势困难的问题。 Human Pose使用OpenPose检测关键点,如头部、肩膀、手的位置等。它适用于复制人类姿势,但不适用于其他细节,如服装、发型和背景。
使用方法: 输入一个图像,并提示模型生成一个图像。Openpose将为你检测姿势。
🔹 本案例需使用Pytorch-1.8 GPU-P100及以上规格运行
🔹 点击Run in ModelArts,将会进入到ModelArts CodeLab中,这时需要你登录华为云账号,如果没有账号,则需要注册一个,且要进行实名认证, 登录之后,等待片刻,即可进入到CodeLab的运行环境
为了方便用户下载使用及快速体验,本案例已将代码及control_sd15_openpose预训练模型转存至华为云OBS中。注意:为了使用该模型与权重,你必须接受该模型所要求的License,请访问huggingface的lllyasviel/ControlNet, 仔细阅读里面的License。模型下载与加载需要几分钟时间。
- import os
- import moxing as mox
-
- parent = os.path.join(os.getcwd(),'ControlNet')
- if not os.path.exists(parent):
- mox.file.copy_parallel('obs://modelarts-labs-bj4-v2/case_zoo/ControlNet/ControlNet',parent)
- if os.path.exists(parent):
- print('Code Copy Completed.')
- else:
- raise Exception('Failed to Copy the Code.')
- else:
- print("Code already exists!")
-
- pose_model_path = os.path.join(os.getcwd(),"ControlNet/models/control_sd15_openpose.pth")
- body_model_path = os.path.join(os.getcwd(),"ControlNet/annotator/ckpts/body_pose_model.pth")
- hand_model_path = os.path.join(os.getcwd(),"ControlNet/annotator/ckpts/hand_pose_model.pth")
- if not os.path.exists(pose_model_path):
- mox.file.copy_parallel('obs://modelarts-labs-bj4-v2/case_zoo/ControlNet/ControlNet_models/control_sd15_openpose.pth',pose_model_path)
- mox.file.copy_parallel('obs://modelarts-labs-bj4-v2/case_zoo/ControlNet/ControlNet_models/body_pose_model.pth',body_model_path)
- mox.file.copy_parallel('obs://modelarts-labs-bj4-v2/case_zoo/ControlNet/ControlNet_models/hand_pose_model.pth',hand_model_path)
- if os.path.exists(pose_model_path):
- print('Models Download Completed')
- else:
- raise Exception('Failed to Copy the Models.')
- else:
- print("Model Packages already exists!")
check GPU & 安装依赖
大约耗时1min
- !nvidia-smi
-
- %cd ControlNet
-
- !pip uninstall torch torchtext -y
- !pip install torch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1
- !pip install omegaconf==2.1.1 einops==0.3.0
- !pip install pytorch-lightning==1.5.0
- !pip install transformers==4.19.2 open_clip_torch==2.0.2
- !pip install gradio==3.24.1
- !pip install translate==3.6.1
- !pip install scikit-image==0.19.3
- !pip install basicsr==1.4.2
- import config
- import cv2
- import einops
- import gradio as gr
- import numpy as np
- import torch
- import random
-
- from pytorch_lightning import seed_everything
- from annotator.util import resize_image, HWC3
- from annotator.openpose import OpenposeDetector
- from cldm.model import create_model, load_state_dict
- from cldm.ddim_hacked import DDIMSampler
-
- from translate import Translator
- from PIL import Image
- import matplotlib.pyplot as plt
- apply_openpose = OpenposeDetector()
-
- model = create_model('./models/cldm_v15.yaml').cpu()
- model.load_state_dict(load_state_dict('./models/control_sd15_openpose.pth', location='cuda'))
- model = model.cuda()
- ddim_sampler = DDIMSampler(model)
- def infer(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, guess_mode, strength, scale, seed, eta):
- trans = Translator(from_lang="ZH",to_lang="EN-US")
- prompt = trans.translate(prompt)
- a_prompt = trans.translate(a_prompt)
- n_prompt = trans.translate(n_prompt)
-
- # 图像预处理
- with torch.no_grad():
- if type(input_image) is str:
- input_image = np.array(Image.open(input_image))
- input_image = HWC3(input_image)
- detected_map, _ = apply_openpose(resize_image(input_image, detect_resolution))
- detected_map = HWC3(detected_map)
- img = resize_image(input_image, image_resolution)
- H, W, C = img.shape
-
- # 初始化检测映射
- detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_NEAREST)
-
- control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
- control = torch.stack([control for _ in range(num_samples)], dim=0)
- control = einops.rearrange(control, 'b h w c -> b c h w').clone()
-
- # 设置随机种子
- if seed == -1:
- seed = random.randint(0, 65535)
- seed_everything(seed)
-
- if config.save_memory:
- model.low_vram_shift(is_diffusing=False)
-
- cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]}
- un_cond = {"c_concat": None if guess_mode else [control], "c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
- shape = (4, H // 8, W // 8)
-
- if config.save_memory:
- model.low_vram_shift(is_diffusing=True)
-
- # 采样
- model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else ([strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01
- samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
- shape, cond, verbose=False, eta=eta,
- unconditional_guidance_scale=scale,
- unconditional_conditioning=un_cond)
-
- if config.save_memory:
- model.low_vram_shift(is_diffusing=False)
-
- # 后处理
- x_samples = model.decode_first_stage(samples)
- x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
-
- results = [x_samples[i] for i in range(num_samples)]
- return [detected_map] + results
设置参数,生成图像
上传您的图像至./ControlNet/test_imgs/
路径下,然后更改图像路径及其他参数后,点击运行。
🔸 img_path:输入图像路径,黑白稿
🔸 prompt:提示词
🔸 a_prompt:次要的提示
🔸 n_prompt: 负面提示,不想要的内容
🔸 image_resolution: 对输入的图片进行最长边等比resize
🔸 detect_resolution: 中间生成条件图像的分辨率
🔸 scale:文本提示的控制强度,越大越强
🔸 guess_mode: 盲猜模式,默认关闭,开启后生成图像将不受prompt影响,使用更多样性的结果,生成后得到不那么遵守图像条件的结果
🔸 seed: 随机种子
🔸 ddim_steps: 采样步数,一般15-30,值越大越精细,耗时越长
🔸 DDIM eta: 生成过程中的随机噪声系数,一般选0或1,1表示有噪声更多样,0表示无噪声,更遵守描述条件
🔸 strength: 这是应用 ControlNet 的步骤数。它类似于图像到图像中的去噪强度。如果指导强度为 1,则 ControlNet 应用于 100% 的采样步骤。如果引导强度为 0.7 并且您正在执行 50 个步骤,则 ControlNet 将应用于前 70% 的采样步骤,即前 35 个步骤。
- #@title ControlNet-OpenPose
-
- img_path = "test_imgs/pose1.png" #@param {type:"string"}
- prompt = "优雅的女士" #@param {type:"string"}
- seed = 1685862398 #@param {type:"slider", min:-1, max:2147483647, step:1}
- guess_mode = False #@param {type:"raw", dropdown}
-
- a_prompt = '质量最好,非常详细'
- n_prompt = '长体,下肢,解剖不好,手不好,手指缺失,手指多,手指少,裁剪,质量最差,质量低'
- num_samples = 1
- image_resolution = 512
- detect_resolution = 512
- ddim_steps = 20
- strength = 1.0
- scale = 9.0
- eta = 0.0
-
- np_imgs = infer(img_path, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, guess_mode, strength, scale, seed, eta)
-
- ori = Image.open(img_path)
- src = Image.fromarray(np_imgs[0])
- dst = Image.fromarray(np_imgs[1])
- fig = plt.figure(figsize=(25, 10))
-
- ax1 = fig.add_subplot(1, 3, 1)
- plt.title('Orginal image', fontsize=16)
- ax1.axis('off')
- ax1.imshow(ori)
-
- ax2 = fig.add_subplot(1, 3, 2)
- plt.title('Pose image', fontsize=16)
- ax2.axis('off')
- ax2.imshow(src)
-
- ax3 = fig.add_subplot(1, 3, 3)
- plt.title('Generate image', fontsize=16)
- ax3.axis('off')
- ax3.imshow(dst)
-
- plt.show()
Gradio应用启动后可在下方页面上传图片根据提示生成图像,您也可以分享public url在手机端,PC端进行访问生成图像。
请注意: 在图像生成需要消耗显存,您可以在左侧操作栏查看您的实时资源使用情况,点击GPU显存使用率即可查看,当显存不足时,您生成图像可能会报错,此时,您可以通过重启kernel的方式重置,然后重头运行即可规避。
- block = gr.Blocks().queue()
- with block:
- with gr.Row():
- gr.Markdown("## 💃人体姿态生成图像")
- with gr.Row():
- with gr.Column():
- gr.Markdown("请上传一张人像图,设置好参数后,点击Run")
- input_image = gr.Image(source='upload', type="numpy")
- prompt = gr.Textbox(label="描述")
- run_button = gr.Button(label="Run")
- with gr.Accordion("高级选项", open=False):
- num_samples = gr.Slider(label="Images", minimum=1, maximum=3, value=1, step=1)
- image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=64)
- strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
- guess_mode = gr.Checkbox(label='Guess Mode', value=False)
- detect_resolution = gr.Slider(label="OpenPose Resolution", minimum=128, maximum=1024, value=512, step=1)
- ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=30, value=20, step=1)
- scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
- seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
- eta = gr.Number(label="eta (DDIM)", value=0.0)
- a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed')
- n_prompt = gr.Textbox(label="Negative Prompt",
- value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
- with gr.Column():
- result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
- ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, guess_mode, strength, scale, seed, eta]
- run_button.click(fn=infer, inputs=ips, outputs=[result_gallery])
- block.launch(share=True)
- INFO:botocore.vendored.requests.packages.urllib3.connectionpool:Starting new HTTP connection (1): proxy.modelarts.com
-
- INFO:botocore.vendored.requests.packages.urllib3.connectionpool:Starting new HTTPS connection (1): www.huaweicloud.com
- Running on local URL: http://127.0.0.1:7860
-
- Running on public URL: https://96b421e81ebf0fe302.gradio.live
- This share link expires in 72 hours. For free permanent hosting and GPU upgrades (NEW!), check out Spaces: https://huggingface.co/spaces