使用Transformers库(Hugging Face提供)进行预训练语言模型的应用涉及几个步骤:安装库、加载预训练模型、进行文本生成或分类任务。以下是一个详细的示例流程。
首先,确保你安装了Transformers和其他必要的库:
pip install transformers torch
以GPT-3(或其他GPT系列模型)为例,演示如何进行文本生成。
from transformers import GPT2LMHeadModel, GPT2Tokenizer
# 加载预训练模型和分词器
model_name = "gpt2"
model = GPT2LMHeadModel.from_pretrained(model_name)
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
# 输入文本
input_text = "Once upon a time"
# 编码输入文本
input_ids = tokenizer.encode(input_text, return_tensors='pt')
# 生成文本
output = model.generate(input_ids, max_length=100, num_return_sequences=1)
# 解码生成的文本
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
print(generated_text)
以BERT(或其他BERT系列模型)为例,演示如何进行文本分类。
from transformers import BertTokenizer, BertForSequenceClassification
from transformers import TextClassificationPipeline
# 加载预训练模型和分词器
model_name = "bert-base-uncased"
tokenizer = BertTokenizer.from_pretrained(model_name)
model = BertForSequenceClassification.from_pretrained(model_name, num_labels=2)
# 创建分类管道
pipeline = TextClassificationPipeline(model=model, tokenizer=tokenizer)
# 输入文本
texts = ["I love this movie!", "I hate this movie."]
# 分类
predictions = pipeline(texts)
for text, pred in zip(texts, predictions):
print(f"Text: {text}\nLabel: {pred['label']}, Score: {pred['score']}\n")
使用BERT的句子嵌入进行文本相似度计算。
from transformers import BertModel, BertTokenizer
import torch
# 加载预训练模型和分词器
model_name = "bert-base-uncased"
tokenizer = BertTokenizer.from_pretrained(model_name)
model = BertModel.from_pretrained(model_name)
# 编码文本
texts = ["I love machine learning.", "I enjoy learning about AI."]
encoded_input = tokenizer(texts, padding=True, truncation=True, return_tensors='pt')
# 获取嵌入
with torch.no_grad():
outputs = model(**encoded_input)
embeddings = outputs.last_hidden_state.mean(dim=1)
# 计算相似度
cosine_sim = torch.nn.functional.cosine_similarity(embeddings[0], embeddings[1], dim=0)
print(f"Cosine similarity: {cosine_sim.item()}")
综合以上步骤,以下是完整的代码示例:
import torch
from transformers import GPT2LMHeadModel, GPT2Tokenizer, BertTokenizer, BertForSequenceClassification, BertModel, TextClassificationPipeline
# GPT-2文本生成
def generate_text(input_text, max_length=100):
model_name = "gpt2"
model = GPT2LMHeadModel.from_pretrained(model_name)
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
input_ids = tokenizer.encode(input_text, return_tensors='pt')
output = model.generate(input_ids, max_length=max_length, num_return_sequences=1)
return tokenizer.decode(output[0], skip_special_tokens=True)
# BERT文本分类
def classify_texts(texts):
model_name = "bert-base-uncased"
tokenizer = BertTokenizer.from_pretrained(model_name)
model = BertForSequenceClassification.from_pretrained(model_name, num_labels=2)
pipeline = TextClassificationPipeline(model=model, tokenizer=tokenizer)
return pipeline(texts)
# BERT文本相似度
def compute_similarity(text1, text2):
model_name = "bert-base-uncased"
tokenizer = BertTokenizer.from_pretrained(model_name)
model = BertModel.from_pretrained(model_name)
encoded_input = tokenizer([text1, text2], padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
outputs = model(**encoded_input)
embeddings = outputs.last_hidden_state.mean(dim=1)
cosine_sim = torch.nn.functional.cosine_similarity(embeddings[0], embeddings[1], dim=0)
return cosine_sim.item()
# 示例文本
input_text = "Once upon a time"
texts = ["I love this movie!", "I hate this movie."]
text1 = "I love machine learning."
text2 = "I enjoy learning about AI."
# 生成文本
generated_text = generate_text(input_text)
print(f"Generated Text:\n{generated_text}\n")
# 文本分类
predictions = classify_texts(texts)
for text, pred in zip(texts, predictions):
print(f"Text: {text}\nLabel: {pred['label']}, Score: {pred['score']}\n")
# 计算文本相似度
similarity = compute_similarity(text1, text2)
print(f"Cosine similarity between \"{text1}\" and \"{text2}\": {similarity}")
这个示例展示了如何使用Transformers库进行文本生成、文本分类和文本相似度计算。你可以根据具体需求调整预训练模型和参数。