第一阶段:基础理论入门
目标:了解大模型的基本概念和背景。
内容:
人工智能演进与大模型兴起。
大模型定义及通用人工智能定义。
GPT模型的发展历程。
第二阶段:核心技术解析
目标:深入学习大模型的关键技术和工作原理。
内容:
算法的创新、计算能力的提升。
数据的可用性与规模性、软件与工具的进步。
生成式模型与大语言模型。
Transformer架构解析。
预训练、SFT、RLHF。
第三阶段:编程基础与工具使用
目标:掌握大模型开发所需的编程基础和工具。
内容:
Python编程基础。
Python常用库和工具。
提示工程基础。
第四阶段:实战项目与案例分析
目标:通过实战项目深化理论知识和提升应用能力。
内容:
实战项目一:基于提示工程的代码生成。
实战项目二:基于大模型的文档智能助手。
实战项目三:基于大模型的医学命名实体识别系统。
案例分析:针对每个实战项目进行详细的分析和讨论。
第五阶段:高级应用开发
目标:掌握大模型的高级应用开发技能。
内容:
大模型API应用开发。
RAG (Retrieval-Augmented Generation)。
向量检索与向量数据库。
LangChain、Agents、AutoGPT。
第六阶段:模型微调与私有化部署
目标:学习如何对大模型进行微调并私有化部署。
内容:
私有化部署的必要性。
HuggingFace开源社区的使用。
模型微调的意义和常见技术。
第七阶段:前沿技术探索
目标:探索大模型领域的前沿技术和未来趋势。
内容:
多模态模型。
参数高效微调技术。
深度学习框架比较。
大模型评估和benchmarking。
大模型AGI学习包
资料目录
成长路线图&学习规划
配套视频教程
实战LLM
人工智能比赛资料
AI人工智能必读书单
面试题合集
《人工智能\大模型入门学习大礼包》,高清版可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
1.成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过网络安全的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。
L1级别:AI大模型时代的华丽登场
L2级别:AI大模型API应用开发工程
L3级别:大模型应用架构进阶实践
L4级别:大模型微调与私有化部署
一般掌握到第四个级别,市场上大多数岗位都是可以胜任,但要还不是天花板,天花板级别要求更加严格,对于算法和实战是非常苛刻的。建议普通人掌握到L4级别即可。
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。
3.LLM
大家最喜欢也是最关心的LLM(大语言模型)
《人工智能\大模型入门学习大礼包》,可以扫描下方二维码免费领取!
本文转自 https://mp.weixin.qq.com/s/Te1V-J_HAWVksqNZ85HbJg,如有侵权,请联系删除。