• 35个Redis企业级性能优化点与解决方案


    Redis作为企业级应用中广泛使用的高性能键值存储数据库,其性能优化是一个复杂且多面的话题。以下是V 哥整理的一些关键的优化点和相应的解决方案,提供给兄弟们参考。

    Redis的性能优化涉及到硬件选择、配置调整、客户端优化、持久化策略等多个层面。

    1. 硬件优化

    解决方案:选择更快的CPU、更多的内存、更快的磁盘(SSD推荐)和足够的网络带宽。

    2. 合理的实例部署

    解决方案:根据业务访问模式,决定是使用单实例、主从复制、哨兵系统还是Redis集群。

    3. 连接数优化

    解决方案:调整redis.conf中的maxclients参数,以适应业务需求。

    示例配置:

    maxclients 10000
    

    4. 命令优化

    解决方案:避免使用耗时的命令,如KEYS、FLUSHDB等,使用SCAN替代。

    5. 使用连接池

    解决方案:使用客户端连接池减少连接建立和销毁的开销。

    示例代码(Java Jedis连接池):

    JedisPoolConfig poolConfig = new JedisPoolConfig();
    poolConfig.setMaxTotal(100);
    poolConfig.setMaxIdle(10);
    poolConfig.setMinIdle(5);
    JedisPool jedisPool = new JedisPool(poolConfig, "localhost", 6379);
    Jedis jedis = jedisPool.getResource();
    // 执行命令
    jedis.set("foo", "bar");
    // 关闭连接
    jedis.close();
    

    6. Pipelining批量命令

    解决方案:使用Pipeline批量执行命令,减少网络延迟。

    示例代码(Java Jedis Pipeline):

    Jedis jedis = jedisPool.getResource();
    Pipeline pipeline = jedis.pipeline();
    pipeline.set("foo", "bar");
    pipeline.get("foo");
    List results = pipeline.syncAndReturnAll();
    jedis.close();
    
    

    7. 键值对设计

    解决方案:选择合适的数据类型,使用散列(Hash)存储相关联的字段。

    示例代码:

    // 使用Hash存储用户信息
    hset "user:1000" "name" "John Doe"
    hset "user:1000" "email" "john@example.com"
    

    8. 内存优化

    解决方案:使用内存淘汰策略,如volatile-lru或allkeys-lru。

    示例配置:

    maxmemory-policy allkeys-lru
    

    9. 持久化策略

    解决方案:根据数据的重要性选择合适的持久化方式(RDB、AOF或两者结合)。

    示例配置:

    appendonly yes
    appendfsync everysec
    

    10. 禁用持久化

    解决方案:对于可以容忍数据丢失的场景,可以完全禁用持久化。

    示例配置:

    save ""
    appendonly no
    

    11. Lua脚本

    解决方案:使用Lua脚本来打包多个命令,减少网络延迟。

    示例代码:

    -- Lua脚本,实现原子增减操作
    return redis.call('INCR', KEYS[1])
    

    12. 慢查询日志

    解决方案:开启慢查询日志,分析慢查询原因。

    示例配置:

    slowlog-log-slower-than 10000
    slowlog-max-len 128
    

    13. 主从复制

    解决方案:使用主从复制提高读性能,同时实现数据的热备份。

    示例配置:

    slaveof  
    

    14. Redis集群

    解决方案:使用Redis集群实现数据的自动分区和高可用。

    示例命令:

    ./redis-trib.rb create --replicas 1 127.0.0.1:7000 127.0.0.1:7001 127.0.0.1:7002
    

    15. 监控和报警

    解决方案:使用Redis自带的监控工具或第三方监控系统,实时监控Redis状态。

    示例命令:

    redis-cli info
    

    16. 禁用THP

    解决方案:禁用Transparent HugePages,避免内存页管理的性能损耗。

    示例命令:

    echo never > /sys/kernel/mm/transparent_hugepage/enabled
    

    17. 操作系统优化

    解决方案:调整操作系统参数,如文件描述符限制、TCP缓冲区大小等。

    示例命令:

    sysctl -w net.core.somaxconn=1024
    ulimit -n 4096
    

    18. 网络优化

    解决方案:优化TCP堆栈参数,如TCP接收和发送缓冲区大小。

    示例命令:

    sysctl -w net.ipv4.tcp_rmem='4096 87380 6291456'
    sysctl -w net.ipv4.tcp_wmem='4096 16384 4194304'
    

    19. 数据压缩

    解决方案:对于大体积的数据,使用数据压缩算法减少存储大小和传输时间。

    示例:使用ZIPLIST编码的数据结构存储小对象。

    20. 优化键设计

    解决方案:设计具有前缀的键名,便于管理和迁移。

    示例:

    // 使用命名空间来区分不同的数据类型
    set user:1000:name "John Doe"
    set user:1000:email "john@example.com"
    

    21. 避免大Key和大Value

    解决方案:大Key和大Value会影响Redis的性能和稳定性,应尽量避免。

    示例:将大的列表或集合分割成多个小的集合。

    22. 使用二进制序列化

    解决方案:使用二进制序列化协议提高数据传输效率。

    示例:使用MSGPACK或PROTOBUF序列化Java对象。

    23. 优化数据访问模式

    解决方案:根据业务特点,优化数据的访问模式,如使用缓存预热、缓存雪崩的解决方案等。

    24. 合理的数据过期策略

    解决方案:为数据设置合理的过期时间,避免过期数据占用内存。

    示例配置:

    expire user:1000:email 86400
    

    25. 减少网络延迟

    解决方案:优化网络环境,使用QoS策略减少网络延迟。

    26. 使用SSD而不是HDD

    解决方案:使用固态硬盘(SSD)代替机械硬盘(HDD),提高磁盘I/O性能。

    27. 优化持久化日志

    解决方案:调整AOF持久化的策略,比如使用everysec或no选项。

    示例配置:

    appendfsync no
    

    28. 使用Redis 4.0以上的版本

    解决方案:新版本的Redis提供了更多的功能和性能改进,如增加了模块系统、支持多线程等。

    29. 避免使用阻塞命令

    解决方案:在可能的情况下,避免使用可能导致阻塞的命令,如BLPOP、BRPOP等。

    30. 定期进行性能评估

    解决方案:定期对Redis实例进行性能评估,根据评估结果调整配置。

    示例工具:使用redis-benchmark工具进行基准测试。

    31. 使用Redisson客户端

    解决方案:对于Java应用,使用Redisson客户端可以提供更高级的功能,如分布式锁、原子操作等。

    示例代码(Redisson配置):

    Config config = new Config();
    SingleServerConfig singleServerConfig = config.useSingleServer();
    singleServerConfig.setAddress("redis://127.0.0.1:6379");
    RedissonClient redisson = Redisson.create(config);
    

    32. 避免全量扫描

    解决方案:在可能的情况下,避免使用KEYS命令进行全量扫描,这会导致性能急剧下降。

    33. 优化数据迁移

    解决方案:在进行数据迁移时,使用MIGRATE命令,它可以原子性地迁移数据。

    示例命令:

    MIGRATE "127.0.0.1" 6379 "127.0.0.1" 6380 "key" 0 5000 REPLACE
    

    34. 优化日志级别

    解决方案:根据需要调整日志级别,避免冗余日志占用过多磁盘空间和CPU资源。

    示例配置:

    loglevel warning
    

    35. 优化Redis配置文件

    解决方案:定期审查和优化redis.conf配置文件,以匹配当前的业务需求。

    最后

    以上是Redis企业级性能优化的一些关键点和解决方案。

    在实施这些优化措施时,V 哥强调一下,需要考虑到业务的具体需求和Redis实例的当前状态,以确保优化措施能够带来性能上的提升,同时避免引入新的问题。此外,对于任何重要的配置更改,都应该先在测试环境中进行验证,以确保优化措施的有效性和系统的稳定性。

  • 相关阅读:
    华为机考入门python3--(14)牛客14-字符串排序
    记一次 .NET 某零售管理系统 存储不足分析
    DeepSpeed
    pinia 模块划分
    如何在Linux服务器上部署Vue项目
    Mysql存储函数
    SPEL表达式注入分析
    能跑通的mmdet3d版本
    第三方模块的下载与安装
    LSTM-Attention单维时间序列预测研究(Matlab代码实现)
  • 原文地址:https://www.cnblogs.com/wgjava/p/18267106