• 目标跟踪算法(bytetrack)-tensorrt部署教程


    一、本机安装python环境

    conda create -n bytetrace_env python=3.8
    activate bytetrace_env
    conda install pytorch torchvision cudatoolkit=10.1 -c
    

    检测GPU是否可用,不可用不行

    import torch
    print(torch.cuda.is_available())
    

    安装bytetrack

    git clone https://github.com/ifzhang/ByteTrack.git
    cd ByteTrack
    pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
    python setup.py develop
    

    在这里插入图片描述
    上述即安装成功。
    安装pycocotools

    pip install cython
    pip install 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'
    

    或者(Linux

    pip install git+https://gitee.com/pursuit_zhangyu/cocoapi.git#subdirectory=PythonAPI
    

    windows下

    pip install pycocotools-windows
    

    二、安装tensorrt环境

    下载tensorrt包
    TensorRT-8.4.3.1.Windows10.x86_64.cuda-10.2.cudnn8.4.zip
    在这里插入图片描述
    将所有的dll复制到
    C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\bin
    并设置环境变量。
    在这里插入图片描述
    虚拟环境中python版本为python3.8

    pip install tensorrt-8.4.3.1-cp38-none-win_amd64.whl
    

    三、转换模型

    https://pan.baidu.com/s/1PiP1kQfgxAIrnGUbFP6Wfg
    qflm
    获取bytetrack_s_mot17.pth.tar并创建pretrained进行存放

    python tools/trt.py -f exps/example/mot/yolox_s_mix_det.py -c pretrained/bytetrack_s_mot17.pth.tar
    

    最后在D:\git_clone\ByteTrack-main\YOLOX_outputs\yolox_s_mix_det目录下生成tensorrt模型与pth模型:
    在这里插入图片描述

    四、cmake生成eigen库并使用VS2015编译

    https://pan.baidu.com/s/15kEfCxpy-T7tz60msxxExg
    ueq4
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

    五、下载opencv450

    https://nchc.dl.sourceforge.net/project/opencvlibrary/4.5.0/opencv-4.5.0-vc14_vc15.exe?viasf=1
    安装D:\opencv450

    六、cmake生成bytetrack并使用VS2015编译

    修改CMakeLists.txt

    cmake_minimum_required(VERSION 2.6)
    
    project(bytetrack)
    
    add_definitions(-std=c++11)
    
    option(CUDA_USE_STATIC_CUDA_RUNTIME OFF)
    set(CMAKE_CXX_STANDARD 11)
    set(CMAKE_BUILD_TYPE Debug)
    
    find_package(CUDA REQUIRED)
    
    include_directories(${
       PROJECT_SOURCE_DIR}/include)
    include_directories(D:\VS2015_CUDA\TensorRT\eigen-3.3.9\build\install\include\eigen3)
    link_directories(${
       PROJECT_SOURCE_DIR}/include)
    # include and link dirs of cuda and tensorrt, you need adapt them if yours are different
    # cuda
    include_directories(C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\include)
    link_directories(C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\lib\x64)
    # cudnn
    include_directories(C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\include)
    link_directories(C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\lib\x64)
    # tensorrt
    include_directories(D:\VS2015_CUDA\TensorRT\TensorRT-8.4.3.1\include)
    link_directories(D:\VS2015_CUDA\TensorRT\TensorRT-8.4.3.1\lib)
    
    set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11 -Wall -D_MWAITXINTRIN_H_INCLUDED")
    
    set(OpenCV_INCLUDE_DIRS_DIRS D:\opencv450\build\include)
    set(OpenCV_LIBS D:\opencv450\build\x64\vc14\lib)
    include_directories(${
       OpenCV_INCLUDE_DIRS})
    
    file(GLOB My_Source_Files ${
       PROJECT_SOURCE_DIR}/src/*.cpp)
    add_executable(bytetrack ${
       My_Source_Files})
    target_link_libraries(bytetrack nvinfer)
    target_link_libraries(bytetrack cudart)
    target_link_libraries(bytetrack ${
       OpenCV_LIBS})
    
    add_definitions(-O2 -pthread)
    

    使用CMake进行配置生成。
    打开VS2015工程进行配置
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    opencv可以自己加进去编译。
    在这里插入图片描述
    修改bytetrack.cpp

    int img_w = cap.get(cv::CAP_PROP_FRAME_WIDTH);
    int img_h = cap.get(cv::CAP_PROP_FRAME_HEIGHT);
    

    这里有个bug,高的参数不对,会影响后面的demo.mp4。
    编译生成
    在这里插入图片描述

    七、使用Dependency Walker查看exe依赖

    在这里插入图片描述
    在这里插入图片描述

    D:\VS2015_CUDA\TensorRT\cpp\model_trt.engine -i D:\VS2015_CUDA\TensorRT\cpp\palace.mp4
    

    八、windows源码

    bytetrack.cpp

    #include 
    #include 
    #include 
    #include 
    #include 
    #include 
    #include 
    #include "NvInfer.h"
    #include "cuda_runtime_api.h"
    #include "logging.h"
    #include "BYTETracker.h"
    
    #define CHECK(status) \
        do\
        {
         \
            auto ret = (status);\
            if (ret != 0)\
            {
         \
                cerr << "Cuda failure: " << ret << endl;\
                abort();\
            }\
        } while (0)
    
    #define DEVICE 0  // GPU id
    #define NMS_THRESH 0.7
    #define BBOX_CONF_THRESH 0.1
    
    using namespace nvinfer1;
    
    // stuff we know about the network and the input/output blobs
    static const int INPUT_W = 1088;
    static const int INPUT_H = 608;
    const char* INPUT_BLOB_NAME = "input_0";
    const char* OUTPUT_BLOB_NAME = "output_0";
    static Logger gLogger;
    
    Mat static_resize(Mat& img) {
       
        float r = min(INPUT_W / (img.cols*1.0), INPUT_H / (img.rows*1.0));
        // r = std::min(r, 1.0f);
        int unpad_w = r * img.cols;
        int unpad_h = r * img.rows;
        Mat re(unpad_h, unpad_w, CV_8UC3);
        resize(img, re, re.size());
        Mat out(INPUT_H, INPUT_W, CV_8UC3, Scalar(114, 114, 114));
        re.copyTo(out(Rect(0, 0, re.cols, re.rows)));
        return out;
    }
    
    struct GridAndStride
    {
       
        int grid0;
        int grid1;
        int stride;
    };
    
    static void generate_grids_and_stride(const int target_w, const int target_h, vector<int>& strides, vector<GridAndStride>& grid_strides)
    {
       
        for (auto stride : strides)
        {
       
    		GridAndStride GS;
            int num_grid_w = target_w / stride;
            int num_grid_h = target_h / stride;
            for (int g1 = 0; g1 < num_grid_h; g1++)
            {
       
                for (int g0 = 0; g0 < num_grid_w; g0++)
                {
       
    				GS.grid0 = g0;
    				GS.grid1 = g1;
    				GS.stride = stride;
                    grid_strides.push_back(GS);
                }
            }
        }
    }
    
    static inline float intersection_area(const Object& a, const Object& b)
    {
       
        Rect_<float> inter = a.rect & b.rect;
        return inter.area();
    }
    
    static void qsort_descent_inplace(vector<Object>& faceobjects, int left, int right)
    {
       
        int i = left;
        int j = right;
        float p = faceobjects[(left + right) / 2].prob;
    
        while (i <= j)
        {
       
            while (faceobjects[i].prob > p)
                i++;
    
            while (faceobjects[j].prob < p)
                j--;
    
            if (i <= j)
            {
       
                // swap
                swap(faceobjects[i], faceobjects[j]);
    
                i++;
                j--;
            }
        }
    
        #pragma omp parallel sections
        {
       
            #pragma omp section
            {
       
                if (left < j) qsort_descent_inplace(faceobjects, left, j);
            }
            #pragma omp section
            {
       
                if (i < right) qsort_descent_inplace(faceobjects, i, right);
            }
        }
    }
    
    static void qsort_descent_inplace(vector<Object>& objects)
    {
       
        if (objects.empty())
            return;
    
        qsort_descent_inplace(objects, 0, objects.size() - 1);
    }
    
    static void nms_sorted_bboxes(const vector<Object>& faceobjects, vector<int>& picked, float nms_threshold)
    {
       
        picked.clear();
    
        const int n = faceobjects.size();
    
        vector<float> areas(n);
        for (int i = 0; i < n; i++)
        {
       
            areas[i] = faceobjects[i].rect.area();
        }
    
        for (int i = 0; i < n; i++)
        {
       
            const Object& a = faceobjects[i];
    
            int keep = 1;
            for (int j = 0; j < (int)picked.size(); j++)
            {
       
                const Object& b = faceobjects[picked[j]];
    
                // intersection over union
                float inter_area = intersection_area(a, b);
                float union_area = areas[i] + areas[picked[j]] - inter_area;
                // float IoU = inter_area / union_area
                if (inter_area / union_area > nms_threshold)
                    keep = 0;
            }
    
            if (keep)
                picked.push_back(i);
        }
    }
    
    
    static void generate_yolox_proposals(vector<GridAndStride> grid_strides, float* feat_blob, float prob_threshold, vector<Object>& objects)
    {
       
        const int num_class = 1;
    
        const int num_anchors = grid_strides.size();
    
        for (int anchor_idx = 0; anchor_idx < num_anchors; anchor_idx++)
        {
       
            const int grid0 = grid_strides[anchor_idx].grid0;
            const int grid1 = grid_strides[anchor_idx].grid1;
            const int stride = grid_strides[anchor_idx].stride;
    
            const int basic_pos = anchor_idx * (num_class + 5);
    
            // yolox/models/yolo_head.py decode logic
            float x_center = (feat_blob[basic_pos+0] + grid0) * stride;
            float y_center = (feat_blob[basic_pos+1] + grid1) * stride;
            float w = exp(feat_blob[basic_pos+2]) * stride;
            float h = exp(feat_blob[basic_pos+3]) * stride;
            float x0 = x_center - w * 0.5f;
            float y0 = y_center - h * 0.5f;
    
            float box_objectness = feat_blob[basic_pos+4];
            for (int class_idx = 0; class_idx < num_class; class_idx++)
            {
       
                float box_cls_score = feat_blob[basic_pos + 5 + class_idx];
                float box_prob = box_objectness * box_cls_score;
                if (box_prob > prob_threshold)
                {
       
                    Object obj;
                    obj.rect.x = x0;
                    obj.rect.y = y0;
                    obj.rect.width = w;
                    obj.rect.height = h;
                    obj.label = class_idx;
                    obj.prob = box_prob;
    
                    objects.push_back(obj);
                }
    
            } // class loop
    
        } // point anchor loop
    }
    
    float* blobFromImage(Mat& img){
       
        cvtColor(img, img, COLOR_BGR2RGB);
    
        float* blob = new float[img.total()*3];
        int channels = 3;
        int img_h = img.rows;
        int img_w = img.cols;
        vector<float> mean = {
       0.485f, 0.456f, 0.406f};
        vector<float> std = {
       0.229f, 0.224f, 0.225f};
        for (size_t c = 0; c < channels; c++) 
        {
       
            for (size_t  h = 0; h < img_h; h++) 
            {
       
                for (size_t w = 0; w < img_w; w++) 
                {
       
                    blob[c * img_w * img_h + h * img_w + w] =
                        (((float)img.at<Vec3b>(h, w)[c]) / 255.0f - mean[c]) / std[c];
                }
            }
        }
        return blob;
    }
    
    
    static void decode_outputs(float* prob, vector<Object>& objects, float scale, const int img_w, const int img_h) {
       
            vector<Object> proposals;
            vector<int> strides = {
       8, 16, 32};
            vector<GridAndStride> grid_strides;
            generate_grids_and_stride(INPUT_W, INPUT_H, strides, grid_strides);
            generate_yolox_proposals(grid_strides, prob,  BBOX_CONF_THRESH, proposals);
            //std::cout << "num of boxes before nms: " << proposals.size() << std::endl;
    
            qsort_descent_inplace(proposals);
    
            vector<int> picked;
            nms_sorted_bboxes(proposals, picked, NMS_THRESH);
    
    
            int count = picked.size();
    
            //std::cout << "num of boxes: " << count << std::endl;
    
            objects.resize(count);
            for (int i = 0; i < count; i++)
            {
       
                objects[i] = proposals[picked[i]];
    
                // adjust offset to original unpadded
                float x0 = (objects[i].rect.x) / scale;
                float y0 = (objects[i].rect.y) / scale;
                float x1 = (objects[i].rect.x + objects[i].rect.width) / scale;
                float y1 = (objects[i].rect.y + objects[i].rect.height) / scale;
    
                // clip
                // x0 = std::max(std::min(x0, (float)(img_w - 1)), 0.f);
                // y0 = std::max(std::min(y0, (float)(img_h - 1)), 0.f);
                // x1 = std::max(std::min(x1, (float)(img_w - 1)), 0.f);
                // y1 = std::max(std::min(y1, (float)(img_h - 1)), 0.f);
    
                objects[i].rect.x = x0;
                objects[i].rect.y = y0;
                objects[i].rect.width = x1 - x0;
                objects[i].rect.height = y1 - y0;
            }
    }
    
    const float color_list[80][3] =
    {
       
        {
       0.000, 0.447, 0.741},
        {
       0.850, 0.325, 0.098},
        {
       0.929, 0.694, 0.125},
        {
       0.494, 0.184, 0.556},
        {
       0.466, 0.674, 0.188},
        {
       0.301, 0.745, 0.933},
        {
       0.635, 0.078, 0.184},
        {
       0.300, 0.300, 0.300},
        {
       0.600, 0.600, 0.600},
        {
       1.000, 0.000, 0.000},
        {
       1.000, 0.500, 0.000},
        {
       0.749, 0.749, 0.000},
        {
       0.000, 1.000, 0.000},
        {
       0.000, 0.000, 1.000},
        {
       0.667, 0.000, 1.000},
        {
       0.333, 0.333, 0.000},
        {
       0.333, 0.667, 0.000},
        {
       0.333, 1.000, 0.000},
        {
       0.667, 0.333, 0.000},
        {
       0.667, 0.667, 0.000},
        {
       0.667, 1.000, 0.000},
        {
       1.000, 0.333, 0.000},
        {
       1.000, 0.667, 0.000},
        {
       1.000, 1.000, 0.000},
        {
       0.000, 0.333, 0.500},
        {
       0.000, 0.667, 0.500},
        {
       0.000, 1.000, 0.500},
        {
       0.333, 0.000, 0.500},
        {
       0.333, 0.333, 0.500},
        {
       0.333, 0.667, 0.500},
        {
       0.333, 1.000, 0.500},
        {
       0.667, 0.000, 0.500},
        {
       0.667, 0.333, 0.500},
        {
       0.667, 0.667, 0.500},
        {
       0.667, 1.000, 0.500},
        {
       1.000, 0.000, 0.500},
        {
       1.000, 0.333, 0.500},
        {
       1.000, 0.667, 0.500},
        {
       1.000, 1.000, 0.500},
        {
       0.000, 0.333, 1.000},
        {
       0.000, 0.667, 1.000},
        {
       0.000, 1.000, 1.000},
        {
       0.333, 0.000, 1.000},
        {
       0.333, 0.333, 1.000},
        {
       0.333, 0.667, 1.000},
        {
       0.333, 1.000, 1.000},
        {
       0.667, 0.000, 1.000},
        {
       0.667, 0.333, 1.000},
        {
       0.667, 0.667, 1.000},
        {
       0.667, 1.000, 1.000},
        {
       1.000, 0.000, 1.000},
        {
       1.000, 0.333, 1.000},
        {
       1.000, 0.667, 1.000},
        {
       0.333, 0.000, 0.000},
        {
       0.500, 0.000, 0.000},
        {
       0.667, 0.000, 0.000},
        {
       0.833, 0.000, 0.000},
        {
       1.000, 0.000, 0.000},
        {
       0.000, 0.167, 0.000},
        {
       0.000, 0.333, 0.000},
        {
       0.000, 0.500, 0.000},
        {
       0.000, 0.667, 0.000},
        {
       0.000, 0.833, 0.000},
        {
       0.000, 1.000, 0.000},
        {
       0.000, 0.000, 0.167},
        {
       0.000, 0.000, 0.333},
        {
       0.000, 0.000, 0.500},
        {
       0.000, 0.000, 0.667},
        {
       0.000, 0.000, 0.833},
        {
       0.000, 0.000, 1.000},
        {
       0.000, 0.000, 0.000},
        {
       0.143, 0.143, 0.143},
        {
       0.286, 0.286, 0.286},
        {
       0.429, 0.429, 0.429},
        {
       0.571, 0.571, 0.571},
        {
       0.714, 0.714, 0.714},
        {
       0.857, 0.857, 0.857},
        {
       0.000, 0.447, 0.741},
        {
       0.314, 0.717, 0.741},
        {
       0.50, 0.5, 0}
    };
    
    void doInference(IExecutionContext& context, float* input, float* output, const int output_size, Size input_shape) {
       
        const ICudaEngine& engine = context.getEngine();
    
        // Pointers to input and output device buffers to pass to engine.
        // Engine requires exactly IEngine::getNbBindings() number of buffers.
        assert(engine.getNbBindings() == 2);
        void* buffers[2];
    
        // In order to bind the buffers, we need to know the names of the input and output tensors.
        // Note that indices are guaranteed to be less than IEngine::getNbBindings()
        const int inputIndex = engine.getBindingIndex(INPUT_BLOB_NAME);
    
        assert(engine.getBindingDataType(inputIndex) == nvinfer1::DataType::kFLOAT);
        const int outputIndex = engine.getBindingIndex(OUTPUT_BLOB_NAME);
        assert(engine.getBindingDataType(outputIndex) == nvinfer1::DataType::kFLOAT);
        int mBatchSize = engine.getMaxBatchSize();
    
        // Create GPU buffers on device
        CHECK(cudaMalloc(&buffers[inputIndex], 3 * input_shape.height * input_shape.width * sizeof(float)));
        CHECK(cudaMalloc(&buffers[outputIndex], output_size*sizeof(float)));
    
        // Create stream
        cudaStream_t stream;
        CHECK(cudaStreamCreate(&stream));
    
        // DMA input batch data to device, infer on the batch asynchronously, and DMA output back to host
        CHECK(cudaMemcpyAsync(buffers[inputIndex], input, 3 * input_shape.height * input_shape.width * sizeof(float), cudaMemcpyHostToDevice, stream));
        context.enqueue(1, buffers, stream, nullptr);
        CHECK(cudaMemcpyAsync(output, buffers[outputIndex], output_size * sizeof(float), cudaMemcpyDeviceToHost, stream));
        cudaStreamSynchronize(stream);
    
        // Release stream and buffers
        cudaStreamDestroy(stream);
        CHECK(cudaFree(buffers[inputIndex]));
        CHECK(cudaFree(buffers[outputIndex]));
    }
    
    int main(int argc, char** argv) {
       
        cudaSetDevice(DEVICE);
        
        // create a model using the API directly and serialize it to a stream
        char *trtModelStream{
       nullptr};
        size_t size{
       0};
    
        if (argc == 4 && string(argv[2]) == "-i") {
       
            const string engine_file_path {
       argv[1]};
            ifstream file(engine_file_path, ios::binary);
            if (file.good()) {
       
                file.seekg(0, file.end);
                size = file.tellg();
                file.seekg(0, file.beg);
                trtModelStream = new char[size];
                assert(trtModelStream);
                file.read(trtModelStream, size);
                file.close();
            }
        } else {
       
            cerr << "arguments not right!" &
  • 相关阅读:
    Linux系统使用宝塔面板安装MySQL服务并实现公网远程访问本地数据库【内网穿透】
    【微前端】single-spa 到底是个什么鬼
    复制粘贴(一):copy paste 事件
    现代 CSS 之高阶图片渐隐消失术
    Day29 单元测试 pytest
    RabbitMQ概述原理
    为什么说 Apache APISIX 是最好的 API 网关?
    【学习笔记】html标签基本介绍
    STM32:TTL串口调试
    org.activiti.bpmn
  • 原文地址:https://blog.csdn.net/baidu_28342107/article/details/139152620