个人主页
创作不易,感谢大家的关注!
计数排序是一种非比较的排序算法,其基本思想是统计待排序元素中小于等于每个元素的个数,从而确定每个元素的位置。
计数排序适用于以下几种情况:
计数排序的核心是:利用数组的索引是有序的前提下,通过将序列中的元素作为索引,其个数作为值放入数组,遍历数组来排序。
方法步骤如下:
时间复杂度:O(N+range),N为待排序序列的长度,range为max-min+1的大小。
空间复杂度:O(range)。
稳定性:稳定。
#define _CRT_SECURE_NO_WARNINGS 1
void PrintArray(int* a, int n);
void CountSort(int* a, int n);
void PrintArray(int* a, int n)
{
for (int i = 0; i < n; i++)
{
printf("%d ", a[i]);
}
printf("\n");
}
//时间复杂度:O(N+range)
//只适合整数/适合范围集中
//空间复杂度:O(range)
void CountSort(int* a, int n)
{
int min = a[0], max = a[0];
for (int i = 1; i < n; i++)
{
if (a[i] < min)
{
min = a[i];
}
if (a[i] > max)
{
max = a[i];
}
}
int range = max - min + 1;
int* count = (int*)calloc(range,sizeof(int));
if (count == NULL)
{
perror("calloc fail");
return;
}
// 统计次数
for (int i = 0; i < n; i++)
{
count[a[i] - min]++;
}
// 排序
int j = 0;
for (int i = 0; i < range; i++)
{
while (count[i]--)
{
a[j++] = i + min;
}
}
free(count);
}
void TestSort()
{
int a[] = { 6,1,2,9,4,2,4,1,4 };
PrintArray(a, sizeof(a) / sizeof(int));
CountSort(a, sizeof(a) / sizeof(int));
PrintArray(a, sizeof(a) / sizeof(int));
}
int main()
{
TestSort();
return 0;
}
今天的分享就到这里啦,感谢大家的支持,我们下次再见!