- class Solution {
- public:
- int longestCommonSubsequence(string text1, string text2) {
- int m=text1.length();
- int n=text2.length();
- vector
int>>f(m+1,vector<int>(n+1,0)); -
-
- for(int i=1;i<=m;i++){
- for(int j=1;j<=n;j++){
- if(text1[i-1]==text2[j-1])
- f[i][j] = f[i-1][j-1]+1;
- else
- f[i][j]= max(f[i-1][j], f[i][j-1]);
- }
- }
- return f[m][n];
-
- }
- };
方法一:先算出最长公共子序列,在分别(word1.length - f[m][n])+ (word2.length-f[m][n]);
- class Solution {
- public:
- int minDistance(string word1, string word2) {
- int m=word1.length();
- int n=word2.length();
- vector
int>> f(m+1,vector<int>(n+1, 0)); - for(int i=1;i<=m;i++){
- for(int j=1;j<=n;j++){
- if(word1[i-1]==word2[j-1])
- f[i][j] = f[i-1][j-1]+1;
- else
- f[i][j] = max(f[i-1][j], f[i][j-1]);
- }
- }
- return m+n-2*f[m][n];
- }
- };
方法二:直接定义f[i][j]:word1[0;i]和word2[0:j]变成一样的最小删除次数。
- class Solution {
- public:
- int minDistance(string word1, string word2) {
- int m=word1.length();
- int n=word2.length();
- vector
int>> f(m+1,vector<int>(n+1,0)); - for(int i=0;i<=m;i++)
- f[i][0] = i;
- for(int j=0;j<=n;j++)
- f[0][j] = j;
-
- for(int i=1;i<=m;i++){
- for(int j=1;j<=n;j++){
- if(word1[i-1]==word2[j-1])
- f[i][j] = f[i-1][j-1];
- else
- f[i][j] = min(f[i-1][j], f[i][j-1])+1;
-
- }
- }
- return f[m][n];
- }
- };