• 相机实时进行透视变换矫正 并用streamlit做个界面


    1. import cv2
    2. import numpy as np
    3. def get_rectangle_corners(image, resize_height, prev_rectangle=None, stability_factor=12):
    4. def process_image(image, height):
    5. ratio = image.shape[0] / height
    6. image = cv2.resize(image, (int(image.shape[1] / ratio), height))
    7. gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    8. gray = cv2.GaussianBlur(gray, (3, 3), 0)
    9. edges = cv2.Canny(gray, 25, 125)
    10. return edges, ratio
    11. def find_rectangle(edges):
    12. contours, _ = cv2.findContours(edges.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
    13. contours = sorted(contours, key=cv2.contourArea, reverse=True)[:5]
    14. for contour in contours:
    15. peri = cv2.arcLength(contour, True)
    16. approx = cv2.approxPolyDP(contour, 0.02 * peri, True)
    17. if len(approx) == 4:
    18. return approx
    19. edges, ratio = process_image(image, resize_height)
    20. rectangle = find_rectangle(edges)
    21. if rectangle is not None:
    22. rectangle = rectangle.reshape(4, 2) * ratio
    23. rectangle = [[int(point[0]), int(point[1])] for point in rectangle]
    24. # if prev rectangle exists and the change is smaller than the stability factor, use the previous rectangle
    25. if prev_rectangle is not None:
    26. diff = np.abs(np.array(prev_rectangle) - np.array(rectangle))
    27. if np.all(diff < stability_factor):
    28. return prev_rectangle
    29. return rectangle
    30. else:
    31. return prev_rectangle # if no rectangle detected, use the previous one
    32. prev_rectangle = None
    33. dst = np.float32([[0, 0], [0, 488],[337, 488],[337, 0]])
    34. cap = cv2.VideoCapture(0)
    35. while True:
    36. ret, frame = cap.read()
    37. if ret:
    38. rectangle = get_rectangle_corners(frame, 500, prev_rectangle)
    39. prev_rectangle = rectangle # save the rectangle for the next frame
    40. print(rectangle)
    41. if rectangle is not None:
    42. src = np.float32(rectangle)
    43. m = cv2.getPerspectiveTransform(src, dst)
    44. result = cv2.warpPerspective(frame, m, (337, 488))
    45. cv2.imshow("src", frame)
    46. cv2.imshow("result", result)
    47. if cv2.waitKey(1) & 0xFF == ord('q'):
    48. break
    49. cap.release()
    50. cv2.destroyAllWindows()

    streamlit界面

    1. import streamlit as st
    2. from cnstd import CnStd
    3. from cnocr import CnOcr
    4. import cv2
    5. import numpy as np
    6. import pandas as pd
    7. from PIL import Image
    8. def get_rectangle_corners(image, resize_height, prev_rectangle=None, stability_factor=12):
    9. def process_image(image, height):
    10. ratio = image.shape[0] / height
    11. image = cv2.resize(image, (int(image.shape[1] / ratio), height))
    12. gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    13. gray = cv2.GaussianBlur(gray, (3, 3), 0)
    14. edges = cv2.Canny(gray, 50, 100)
    15. return edges, ratio
    16. def find_rectangle(edges):
    17. contours, _ = cv2.findContours(edges.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
    18. contours = sorted(contours, key=cv2.contourArea, reverse=True)[:1]
    19. for contour in contours:
    20. peri = cv2.arcLength(contour, True)
    21. approx = cv2.approxPolyDP(contour, 0.02 * peri, True)
    22. if len(approx) == 4:
    23. return approx
    24. edges, ratio = process_image(image, resize_height)
    25. rectangle = find_rectangle(edges)
    26. if rectangle is not None:
    27. rectangle = rectangle.reshape(4, 2) * ratio
    28. rectangle = [[int(point[0]), int(point[1])] for point in rectangle]
    29. if prev_rectangle is not None:
    30. diff = np.abs(np.array(prev_rectangle) - np.array(rectangle))
    31. if np.all(diff < stability_factor):
    32. return prev_rectangle
    33. return rectangle
    34. else:
    35. return prev_rectangle # if no rectangle detected, use the previous one
    36. # Code where the two scripts are fused together
    37. dst = np.float32([[0, 0], [0, 588],[640, 588],[640, 0]])
    38. prev_rectangle = None
    39. cap = cv2.VideoCapture(0)
    40. std = CnStd()
    41. cn_ocr = CnOcr()
    42. st.sidebar.title("易读写")
    43. option = st.sidebar.selectbox('请选择要运行的功能', ('显示矫正后画面', '图片转文字'))
    44. # 定义两个图像显示窗口
    45. FRAME_WINDOW_RAW = st.image([])
    46. FRAME_WINDOW_TRANSFORMED = st.image([])
    47. # 需要实时显示矫正后画面
    48. if option == '显示矫正后画面':
    49. run = st.checkbox('开始运行')
    50. FRAME_WINDOW = st.image([])
    51. alpha = st.sidebar.slider('亮度调节 Brightness', min_value=0.0, max_value=3.0,
    52. value=1.0) # Add a slider for brightness
    53. angle = st.sidebar.slider('视角调节 Rotation', 0, 360, 0) # Add a slider for rotation
    54. if run:
    55. while True:
    56. ret, frame = cap.read()
    57. if not ret:
    58. st.write("Can't receive frame (Stream end?). Exiting..")
    59. break
    60. rectangle = get_rectangle_corners(frame, 500, prev_rectangle)
    61. prev_rectangle = rectangle # save the rectangle for the next frame
    62. if rectangle is not None:
    63. src = np.float32(rectangle)
    64. m = cv2.getPerspectiveTransform(src, dst)
    65. result = cv2.warpPerspective(frame, m, (640, 588))
    66. raw_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # Convert BGR to RGB for raw frame
    67. img_raw = Image.fromarray(raw_frame)
    68. FRAME_WINDOW_RAW.image(img_raw) # Show raw frame
    69. result = cv2.cvtColor(result, cv2.COLOR_BGR2RGB) # Convert BGR to RGB for transformed
    70. result = cv2.convertScaleAbs(result, alpha=alpha, beta=0)
    71. img_transformed = Image.fromarray(result)
    72. FRAME_WINDOW_TRANSFORMED.image(img_transformed) # Show transformed result
    73. else:
    74. st.write('Stopped')
    75. cap.release()
    76. elif option == '图片转文字':
    77. uploaded_file = st.sidebar.file_uploader("选择一个图片文件")
    78. if uploaded_file is not None:
    79. img = Image.open(uploaded_file)
    80. st.image(img, caption='Uploaded Image.', use_column_width=True)
    81. if st.sidebar.button('开始运行'):
    82. # Copy and adapt your code here
    83. with st.spinner('OCR is in progress...'):
    84. np_img = np.array(img) # Convert PIL Image to numpy array
    85. box_infos = std.detect(np_img)
    86. text = []
    87. for box_info in box_infos['detected_texts']:
    88. cropped_img = box_info['cropped_img']
    89. ocr_res = cn_ocr.ocr_for_single_line(cropped_img)
    90. text.append(ocr_res['text'])
    91. st.subheader("Extracted text:")
    92. for line in text:
    93. st.write(line)
    94. st.success('Text extraction complete')

  • 相关阅读:
    神经网络——反向传播算法
    转发与重定向的使用
    使用CIntHeap 二叉堆进行A*路径搜索代码学习
    入门电机系列之6PID 算法的原理与应用
    wordpress 上传附件中文文件名乱码解决办法(for Windows)
    Java 性能优化之直接使用成员变量 VS 拷贝副本
    Python实现猎人猎物优化算法(HPO)优化BP神经网络分类模型(BP神经网络分类算法)项目实战
    信息学竞赛初中初赛模拟卷-有答案
    关于2023年11月25日PMI认证考试准考信下载及考场规定等事项通知
    电脑硬盘分区该怎么进行?这几种方法简单有效!
  • 原文地址:https://blog.csdn.net/qq_53821866/article/details/139657187