• 《精通ChatGPT:从入门到大师的Prompt指南》附录C:专业术语表


    附录C:专业术语表

    本附录旨在为读者提供一本全面的术语表,帮助理解《精通ChatGPT:从入门到大师的Prompt指南》中涉及的各种专业术语。无论是初学者还是高级用户,这些术语的定义和解释将为您在使用ChatGPT时提供重要参考。

    A

    • AI(人工智能):Artificial Intelligence的缩写,指的是由计算机系统模拟人类智能的技术,涵盖机器学习、自然语言处理、计算机视觉等领域。

    • API(应用程序接口):Application Programming Interface的缩写,指的是允许不同软件应用程序之间进行交互的一组规则和协议。

    B

    • Bot(机器人):一种自动化软件,可以模拟人类的行为,常用于客户服务、信息检索等领域。

    • Big Data(大数据):指的是数据集的体积、速度和多样性超出了传统数据库管理工具处理能力的数据集合。

    C

    • Chatbot(聊天机器人):一种基于人工智能的程序,能够通过文字或语音与用户进行对话,通常用于客服或信息查询。

    • Context(上下文):在自然语言处理领域,指的是句子或段落中影响词语或短语意义的其他部分。

    • Corpus(语料库):用于训练自然语言处理模型的大规模文本数据集合。

    D

    • Deep Learning(深度学习):机器学习的一个分支,使用多层神经网络来分析数据和模式识别。

    • Dataset(数据集):用于训练和测试模型的数据集合。

    E

    • Embedding(嵌入):一种将词语或短语转换为向量的方法,使其能够被机器学习模型处理。

    • Epoch(训练周期):在深度学习中,一个训练周期指的是模型在整个训练数据集上完成一次训练的过程。

    F

    • Fine-tuning(微调):在预训练模型的基础上,对特定任务进行进一步的训练,以提高模型在该任务上的表现。

    G

    • GPT(生成式预训练变换器):Generative Pre-trained Transformer的缩写,一种由OpenAI开发的用于自然语言处理的深度学习模型。

    H

    • Hyperparameter(超参数):在机器学习模型训练过程中,需在训练前设置的参数,影响模型训练的效果和效率。

    • Hypothesis(假设):在统计学和机器学习中,用于推测和验证的一个理论陈述。

    I

    • Inference(推理):模型在接收输入数据后,进行计算以生成输出的过程。

    • Intent(意图):在自然语言处理中,指用户表达的目的或想要完成的任务。

    J

    • JSON(JavaScript对象表示法):一种轻量级的数据交换格式,易于人阅读和编写,同时易于机器解析和生成。

    K

    • Knowledge Base(知识库):一个系统化的知识存储库,包含相关领域的信息和数据,用于支持智能系统的推理和决策。

    L

    • Language Model(语言模型):一种通过分析和学习语言模式,预测文本中单词序列的概率模型。

    • Latency(延迟):指的是数据从源头传输到目的地所需的时间,影响系统的响应速度。

    M

    • Machine Learning(机器学习):人工智能的一个分支,涉及开发算法和模型,使计算机能够从数据中学习和做出决策。

    • Model(模型):在机器学习中,指的是由训练数据学习到的函数,用于对新数据进行预测或分类。

    N

    • Natural Language Processing(自然语言处理):一种研究计算机与人类语言之间相互作用的人工智能技术。

    • Neural Network(神经网络):模仿生物神经网络的计算模型,广泛用于深度学习中。

    O

    • Overfitting(过拟合):一种建模误差,指的是模型在训练数据上表现良好,但在新数据上表现不佳。

    • Optimization(优化):调整模型参数以最小化损失函数的过程。

    P

    • Prompt(提示词):在使用ChatGPT时,指用户输入的文字,模型根据这些提示词生成响应。

    • Pre-training(预训练):在特定任务训练之前,对模型进行大规模数据集上的初始训练。

    Q

    • Query(查询):在信息检索中,指用户输入的问题或请求。

    R

    • Reinforcement Learning(强化学习):一种机器学习方法,通过奖励和惩罚机制来训练模型。

    • Regularization(正则化):在模型训练中,通过增加惩罚项来防止过拟合的方法。

    S

    • Supervised Learning(监督学习):一种机器学习方法,利用已标注的数据集进行模型训练。

    • Semantic Analysis(语义分析):在自然语言处理中,指理解和提取文本中含义的过程。

    T

    • Tokenization(分词):将文本分割成单个词语或短语的过程,是自然语言处理的基础步骤。

    • Transformer(变换器):一种深度学习模型架构,广泛用于自然语言处理任务。

    U

    • Unsupervised Learning(无监督学习):一种机器学习方法,利用未标注的数据集进行模型训练。

    • User Interface(用户界面):指用户与计算机系统交互的界面设计和布局。

    V

    • Validation Set(验证集):用于评估模型性能的未参与训练的数据集。

    • Vector(向量):在机器学习中,指的是表示数据的数值数组,常用于文本表示。

    W

    • Weight(权重):在神经网络中,指连接节点之间的参数,影响信号传递的强度。

    X

    • XML(可扩展标记语言):一种用于描述数据的标记语言,广泛用于数据交换和存储。

    Y

    • Yield(产出):在统计学中,指的是一个过程或实验的输出结果。

    Z

    • Zero-shot Learning(零样本学习):一种机器学习方法,能够在没有见过相关样本的情况下进行预测。

    以上是本书中常见的专业术语解释,希望这些定义能够帮助读者更好地理解和应用ChatGPT技术。如果在阅读过程中遇到不明白的术语,可以随时查阅本附录,获得详细的解释和背景知识。

     原文链接:

    《精通ChatGPT:从入门到大师的Prompt指南》附录C:专业术语表 (chatgptzh.com)icon-default.png?t=N7T8https://www.chatgptzh.com/post/462.html

    书籍目录:

    《精通ChatGPT:从入门到大师的Prompt指南》大纲目录 (chatgptzh.com)icon-default.png?t=N7T8https://www.chatgptzh.com/post/448.html

  • 相关阅读:
    2022.5.15-参加北京青少年程序设计展示活动海淀区赛(失误了,三等奖)
    算法——排序
    嵌入式学习笔记(57)LCD如何显示图像
    Linux文件搜索命令find、which和whereis应用
    外包干了3个多月,技术退步明显。。。。。
    C++与C的区别终于说清楚了!
    function+bind实现多态(松耦合)
    Go:模幂算法(附完整源码)
    视频图像处理算法opencv在esp32及esp32s3上面的移植,也可以移植openmv
    一道题学习node.js中的CRLF注入
  • 原文地址:https://blog.csdn.net/weixin_58881595/article/details/139560872