A Sanitize Hands
问题:
思路:前缀和,暴力,你想咋做就咋做
代码:
- #include
-
- using namespace std;
-
- const int N = 2e5 + 10;
-
- int n, m;
- int a[N];
-
- int main() {
- cin >> n >> m;
- for(int i = 1; i <= n; i ++ ) {
- cin >> a[i];
- }
-
- int ans = 0;
- for(int i = 1; i <= n; i ++ ) {
- m -= a[i];
- ans = i;
- if(m <= 0) break;
- }
-
- if(m < 0) cout << ans - 1;
- else cout << ans;
- return 0;
- }
B Uppercase and Lowercase
问题:
思路:大小写转换,这里有个问题,为什么我的转换最后都变成数字了,先留个疑问
代码:
- #include
- #include
- #include
-
- using namespace std;
-
- const int N = 2e5 + 10;
-
- string str;
-
- int main() {
- cin >> str;
- int cnt1 = 0, cnt2 = 0;
- for(auto t: str) {
- if(t >= 'a' && t <= 'z') cnt1 ++;
- else cnt2 ++;
- }
-
- if(cnt1 >= cnt2)
- transform(str.begin(),str.end(),str.begin(),::tolower);
- else
- transform(str.begin(),str.end(),str.begin(),::toupper);
- cout<
- return 0;
- }
C Sierpinski carpet
问题:
思路:阴间题,第一眼递归,但是不想求太多坐标,于是想到把图全变成‘#’最后填充'.'
代码:
- #include
- #include
- #include
-
- using namespace std;
-
- const int N = pow(3, 6) + 10;
-
- char g[N][N];
- int n;
-
- int main() {
- cin >> n;
- int len = pow(3, n);
- for(int i = 1; i <= len; i ++ ) {
- for(int j = 1; j <= len; j ++ ) {
- g[i][j] = '#';
- }
- }
-
- for(int level = 1; level <= n; level ++ ) {
- for(int i = 1 + pow(3, level - 1); i <= len; i += pow(3, level)) {
- for(int j = 1 + pow(3, level - 1); j <= len; j += pow(3, level)) {
- for(int k = i; k <= i + pow(3, level - 1) - 1; k ++ ) {
- for(int u = j; u <= j + pow(3, level - 1) - 1; u ++ ) {
- g[k][u] = '.';
- }
- }
- }
- }
- }
-
- for(int i = 1; i <= len; i ++ ) {
- for(int j = 1; j <= len; j ++ ) {
- cout << g[i][j];
- }
- cout << endl;
- }
- return 0;
- }
D 88888888
问题:
思路:逆元,快速幂,对原式子变形后发现最后的结果实际上就是x 乘上一个等比数列,这是碰见的第一道逆元的题目,也明确了我对逆元的认识,由于 a / b % mod != (a % mod/ b % mod) % mod,而直接除的话会造成精度丢失,因此我们可以把除法变成乘法,根据费马小定理如果b和p互质,那么b的逆元就等于b ^ p - 2 因此可以快速幂求逆元
代码:
- #include
-
- using namespace std;
-
- const int mod = 998244353;
-
- long long x;
-
- int get(long long a) {
- int cnt = 0;
- while(a) {
- a /= 10;
- cnt ++;
- }
- return cnt;
- }
-
- long long qmi(long long a, long long b) {
- long long res = 1;
- while(b) {
- if(b & 1) res = ((res % mod) * (a % mod)) % mod;
- b >>= 1;
- a = (a % mod * a % mod) % mod;
- }
- return res;
- }
-
- int main() {
- cin >> x;
- int len = get(x);
- long long part1 = x % mod;
- long long a = qmi(10, (long long)len);
- long long b = qmi(a, x);
- b --;
- long long c = qmi(a - 1, 998244353 - 2);
- long long part2 = (b % mod * c % mod) % mod;
- cout << (part1 * part2) % mod;
- return 0;
- }
E Reachability in Functional Graph
问题:
思路:考虑如果题目是一颗树的话那么直接一个记忆化即可,但是该题会出现环,因此考虑缩点,记得开long long
据说这是基环树板子,回头学一下基环树
代码:
- #include
- #include
- #include
- #include
-
- using namespace std;
-
- const int N = (2e5 + 10) * 2;
-
- stack<int> stk;
- int n;
- int val[N], ne[N], h[N], idx;
- int dfn[N], low[N], id[N], _size[N], scc_cnt, ts;
- int cnt[N];
- bool ins[N], st[N];
- long long ans = 0;
-
- void add(int a, int b) {
- val[idx] = b;
- ne[idx] = h[a];
- h[a] = idx ++;
- }
-
- void tarjan(int u) {
- dfn[u] = low[u] = ++ ts;
- stk.push(u);
- ins[u] = true;
- for(int i = h[u]; i != -1; i = ne[i]) {
- int j = val[i];
- if(!dfn[j]) {
- tarjan(j);
- low[u] = min(low[u], low[j]);
- } else if(ins[j]) low[u] = min(low[u], dfn[j]);
- }
-
- if(dfn[u] == low[u]) {
- ++ scc_cnt;
- int y;
- do {
- y = stk.top();
- stk.pop();
- ins[y] = false;
- id[y] = scc_cnt;
- _size[scc_cnt] ++;
- } while (y != u);
- }
- }
-
- void dfs(int u) {
- for(int i = h[u]; i != -1; i = ne[i]) {
- int j = val[i];
- if(!st[j]) {
- dfs(j);
- st[j] = true;
- }
- cnt[u] += cnt[j];
- ans += _size[u] * cnt[j];
- }
- }
-
- int main() {
- memset(h, -1, sizeof h);
- cin >> n;
- scc_cnt = n;
- for(int i = 1; i <= n; i ++ ) {
- int x;
- cin >> x;
- add(i, x);
- }
-
- for(int i = 1; i <= n; i ++ ) if(!dfn[i]) tarjan(i);
- for(int i = 1; i <= n; i ++ ) cnt[id[i]] = _size[id[i]];
- map
int, int>, int> ma; - for(int i = 1; i <= n; i ++ ) {
- for(int j = h[i]; j != -1; j = ne[j]) {
- int k = val[j];
- if(id[i] != id[k] && !ma[{i, k}]) {
- add(id[i], id[k]);
- ma[{i, k}] ++;
- }
- }
- }
-
- memset(st, 0, sizeof st);
- for(int i = scc_cnt; i > n; i -- ) {
- if(!st[i]) {
- st[i] = true;
- dfs(i);
- }
- }
- for(int i = scc_cnt; i > n; i -- ) ans += (long long)_size[i] * (_size[i] - 1);
- cout << ans + n;
- return 0;
- }
F two sequence queries
题目:
思路:对sigema a*b做一点变形 设a加上了x,b加上了y
原式 = sigema (a + x) (b + y) = sigema a * b + y * a + x * b + x * y
于是题目变成了区间修改区间查询,显然线段树lazytag板子
代码:这里代码只a了21个数据,应该是哪里没有mod到位或者什么细节没有注意到,短时间内不改了,到期末了
- #include
-
- using namespace std;
-
- const int N = 2e5 + 10;
- const int mod = 998244353;
-
- int n, m;
- struct node{
- unsigned long long l, r;
- unsigned long long suma, sumb, sumab;
- unsigned long long taga, tagb;
- }tr[4 * N];
-
- void pushup(int u) {
- tr[u].suma = (tr[u << 1].suma + tr[u << 1 | 1].suma) % mod;
- tr[u].sumb = (tr[u << 1].sumb + tr[u << 1 | 1].sumb) % mod;
- tr[u].sumab = (tr[u << 1].sumab + tr[u << 1 | 1].sumab) % mod;
- }
-
- void pushdown(int u) {
- tr[u << 1].sumab = (tr[u << 1].sumab + tr[u].taga * tr[u << 1].sumb + tr[u].tagb * tr[u << 1].suma + tr[u].taga * tr[u].tagb * (tr[u << 1].r - tr[u << 1].l + 1)) % mod;
- tr[u << 1 | 1].sumab = (tr[u << 1 | 1].sumab + tr[u].taga * tr[u << 1 | 1].sumb + tr[u].tagb * tr[u << 1 | 1].suma + tr[u].taga * tr[u].tagb * (tr[u << 1 | 1].r - tr[u << 1 | 1].l + 1)) % mod;
-
- tr[u << 1].suma = (tr[u << 1].suma + (tr[u << 1].r - tr[u << 1].l + 1) * tr[u].taga) % mod;
- tr[u << 1 | 1].suma = (tr[u << 1 | 1].suma + (tr[u << 1 | 1].r - tr[u << 1 | 1].l + 1) * tr[u].taga) % mod;
- tr[u << 1].taga = (tr[u << 1].taga + tr[u].taga) % mod;
- tr[u << 1 | 1].taga = (tr[u << 1 | 1].taga + tr[u].taga) % mod;
- tr[u].taga = 0;
- tr[u << 1].sumb = (tr[u << 1].sumb + (tr[u << 1].r - tr[u << 1].l + 1) * tr[u].tagb) % mod;
- tr[u << 1 | 1].sumb = (tr[u << 1 | 1].sumb + (tr[u << 1 | 1].r - tr[u << 1 | 1].l + 1) * tr[u].tagb) % mod;
- tr[u << 1].tagb = (tr[u << 1].tagb + tr[u].tagb) % mod;
- tr[u << 1 | 1].tagb = (tr[u << 1 | 1].tagb + tr[u].tagb) % mod;
- tr[u].tagb = 0;
- }
-
- void build(int u, int l, int r) {
- tr[u].l = l, tr[u].r = r;
- if(l == r) return;
- int mid = l + r >> 1;
- build(u << 1, l, mid);
- build(u << 1 | 1, mid + 1, r);
- }
-
- void add(int u, int p, int x, int type) {
- if(tr[u].l == tr[u].r) {
- if(type == 1) tr[u].suma = x;
- else if(type == 2) tr[u].sumb = x;
- tr[u].sumab = (tr[u].suma * tr[u].sumb) % mod;
- } else {
- int mid = tr[u].l + tr[u].r >> 1;
- if(p <= mid) add(u << 1, p, x, type);
- else add(u << 1 | 1, p, x, type);
- pushup(u);
- }
- }
-
- void modify(int u, int l, int r, unsigned long long d, int type) {
- if(tr[u].l >= l && tr[u].r <= r) {
- if(type == 1) {
- tr[u].suma = (tr[u].suma + d * (tr[u].r - tr[u].l + 1)) % mod;
- tr[u].taga = (tr[u].taga + d) % mod;
- tr[u].sumab = (tr[u].sumab + d * tr[u].sumb) % mod;
- } else if(type == 2) {
- tr[u].sumb = (tr[u].sumb + d * (tr[u].r - tr[u].l + 1)) % mod;
- tr[u].tagb = (tr[u].tagb + d) % mod;
- tr[u].sumab = (tr[u].sumab + d * tr[u].suma) % mod;
- }
- } else {
- pushdown(u);
- int mid = tr[u].l + tr[u].r >> 1;
- if(mid >= l) modify(u << 1, l, r, d, type);
- if(mid < r) modify(u << 1 | 1, l, r, d, type);
- pushup(u);
- }
- }
-
- long long query(int u, int l, int r) {
- if(tr[u].l >= l && tr[u].r <= r) {
- return tr[u].sumab;
- } else {
- pushdown(u);
- int mid = tr[u].l + tr[u].r >> 1;
- long long res = 0;
- if(mid >= l) res = query(u << 1, l, r);
- if(mid < r) res = (res + query(u << 1 | 1, l, r)) % mod;
- return res;
- }
- }
-
- int main() {
- cin >> n >> m;
- build(1, 1, n);
- for(int i = 1; i <= n; i ++ ) {
- int x;
- cin >> x;
- add(1, i, x % mod, 1);
- }
- for(int i = 1; i <= n; i ++ ) {
- int x;
- cin >> x;
- add(1, i, x % mod, 2);
- }
-
- while(m -- ) {
- int op;
- cin >> op;
- if(op == 1) {
- int l, r;
- unsigned long long d;
- cin >> l >> r >> d;
- modify(1, l, r, d % mod, 1);
- } else if(op == 2) {
- int l, r, d;
- cin >> l >> r >> d;
- modify(1, l, r, d % mod, 2);
- } else {
- int l, r;
- cin >> l >> r;
- cout << query(1, l, r) << endl;
- }
- }
- return 0;
- }