分布式系统是一个硬件或软件组件分布在不同的网络计算机上,彼此之间仅仅通过消息传递进行通信和协调的系统。
所谓分布式系统,就是一个业务拆分成多个子业务,分布在不同的服务器节点,共同构成的系统称为分布式系统,同一个分布式系统中的服务器节点在空间部署上是可以随意分布的,这些服务器可能放在不同的机柜中,也可能在不同的机房中,甚至分布在不同的城市。
分布式与集群的区别
集群: 多个服务器做同一个事情
分布式: 多个服务器做不同的事情
通信异常
网络本身的不可靠性,因此每次网络通信都会伴随着网络不可用的风险(光纤、路由、DNS等硬件设备或系统的不可用),都会导致最终分布式系统无法顺利进行一次网络通信,另外,即使分布式系统各节点之间的网络通信能够正常执行,其延时也会大于单机操作,存在巨大的延时差别,也会影响消息的收发过程,因此消息丢失和消息延迟变的非常普遍。
网络分区
网络之间出现了网络不连通,但各个子网络的内部网络是正常的,从而导致整个系统的网络环境被切分成了若干个孤立的区域,分布式系统就会出现局部小集群,在极端情况下,这些小集群会独立完成原本需要整个分布式系统才能完成的功能,包括数据的事务处理,这就对分布式一致性提出非常大的挑战。
节点故障
节点故障是分布式系统下另一个比较常见的问题,指的是组成分布式系统的服务器节点出现的宕机或"僵死"现象,根据经验来说,每个节点都有可能出现故障,并且经常发生.
三态
分布式系统每一次请求与响应存在特有的“三态”概念,即成功、失败和超时。
重发
分布式系统在发生调用的时候可能会出现 失败 超时 的情况. 这个时候需要重新发起调用.
幂等
一次和多次请求某一个资源对于资源本身应该具有同样的结果(网络超时等问题除外)。也就是说,其任意多次执行对资源本身所产生的影响均与一次执行的影响相同
分布式数据一致性,指的是数据在多份副本中存储时,各副本中的数据是一致的。
副本一致性
分布式系统当中,数据往往会有多个副本。多个副本就需要保证数据的一致性。这就带来了同步的问题,因为网络延迟等因素, 我们几乎没有办法保证可以同时更新所有机器当中的包括备份所有数据. 就会有数据不一致的情况。
一致性分类
强一致性:是最符合用户直觉的,它要求系统写入什么,读出来的也会是什么,用户体验好,但实现起来往往对系统的性能影响大。强一致性很难实现。
弱一致性:约束了系统在写入成功后,不承诺立即可以读到写入的值,也不承诺多久之后数据能够达到一致,但会尽可能地保证到某个时间级别(比如秒级别)后,数据能够达到一致状态。
最终一致性:最终一致性也是弱一致性的一种,它无法保证数据更新后,所有后续的访问都能看到最新数值,而是需要一个时间,在这个时间之后可以保证这一点(就是在一段时间后,节点间的数据会最终达到一致状态),而在这个时间内,数据也许是不一致的,这个系统无法保证强一致性的时间片段被称为「不一致窗口」。不一致窗口的时间长短取决于很多因素,比如备份数据的个数、网络传输延迟速度、系统负载等。
最终一致性在实际应用中又有多种变种:
一致性模型图
CAP定理(CAP theorem),又被称作布鲁尔定理(Brewer’s theorem),它指出对于一个分布式计算系统来说,不可能同时满足以下三点
选项 | 含义 |
---|---|
一致性(Consistency) | 所有节点访问时都是同一份最新的数据副本 |
可用性(Availability) | 每次请求都能获取到正常的响应,但是不保证获取的数据为最新数据 |
分区容错性(Partition tolerance) | 分布式系统在遇到任何网络分区故障的时候,仍然能够对外提供满足一致性和可用性的服务, 除非整个网络环境都发生了故障 |
一致性
这里指的是强一致性
在写操作完成后开始的任何读操作都必须返回该值,或者后续写操作的结果. 也就是说,在一致性系统中,一旦客户端将值写入任何一台服务器并获得响应,那么之后client从其他任何服务器读取的都是刚写入的数据
可用性
系统中非故障节点收到的每个请求都必须有响应. 在可用系统中,如果我们的客户端向服务器发送请求,并且服务器未崩溃,则服务器必须最终响应客户端,不允许服务器忽略客户的请求
分区容错性
允许网络丢失从一个节点发送到另一个节点的任意多条消息,即不同步. 也就是说,G1和G2发送给对方的任何消息都是可以放弃的,也就是说G1和G2可能因为各种意外情况,导致无法成功进行同步,分布式系统要能容忍这种情况。
在实际的业务中,这三方面是不能同时满足的,也很容易证明,最多只能满足其中的两个
CAP三者如何权衡
如何进行3选2:
放弃了一致性,满足分区容错,那么节点之间就有可能失去联系,为了高可用,每个节点只能用本地数据提供服务,而这样会容易导致全局数据不一致性。对于互联网应用来说,机器数量庞大,节点分散,网络故障再正常不过了,那么此时就是保障AP,放弃C的场景,而从实际中理解,像网站这种偶尔没有一致性是能接受的,但不能访问问题就非常大了。
对于银行来说,就是必须保证强一致性,也就是说C必须存在,那么就只用CA和CP两种情况,当保障强一致性和可用性(CA),那么一旦出现通信故障,系统将完全不可用。另一方面,如果保障了强一致性和分区容错(CP),那么就具备了部分可用性。实际究竟应该选择什么,是需要通过业务场景进行权衡的(并不是所有情况都是CP好于CA,只能查看信息但不能更新信息有时候还不如直接拒绝服务)
上面我们讲到CAP 不可能同时满足,而分区容错性是对于分布式系统而言,是必须的。最后,我们说,如果系统能够同时实现 CAP 是再好不过的了,所以出现了 BASE 理论
BASE:全称:Basically Available(基本可用),Soft state(软状态),和 Eventually consistent(最终一致性)三个短语的缩写 ,Base 理论是对 CAP 中一致性和可用性权衡的结果,其来源于对大型互联网分布式实践的总结,是基于 CAP 定理逐步演化而来的。其核心思想是: 既是无法做到强一致性(Strong consistency),但每个应用都可以根据自身的业务特点,采用适当的方式来使系统达到最终一致性(Eventual consistency)。
Basically Available(基本可用)
什么是基本可用呢?假设系统,出现了不可预知的故障,但还是能用,相比较正常的系统而言:
Soft state(软状态)
什么是软状态呢?相对于原子性而言,要求多个节点的数据副本都是一致的,这是一种 “硬状态”。软状态指的是:允许系统中的数据存在中间状态,并认为该状态不会影响系统的整体可用性,即允许系统在多个不同节点的数据副本存在数据延时
Eventually consistent(最终一致性)
上面说软状态,然后不可能一直是软状态,必须有个时间期限。在期限过后,应当保证所有副本保持数据一致性。从而达到数据的最终一致性。这个时间期限取决于网络延时,系统负载,数据复制方案设计等等因素。