• 爬取基金收盘价并用pyecharts进行展现


    爬取基金收盘价并用pyecharts进行展现

    一、用到的第三方包

    因为使用到了一些第三方的包,包还是比较大的如果直接从社区下载比较费劲,所以建议配置国内镜像源,这里以清华的镜像源为例。

    pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
    pip config set global.trusted_host pypi.tuna.tsinghua.edu.cn
    

    安装第三方包

    pip install pandas bs4 pyecharts
    

    二、数据获取

    网页爬取数据

    import requests
    from bs4 import BeautifulSoup
    # 从url获取信息
    response = requests.get('url地址')
    # 解析HTML内容
    soup = BeautifulSoup(response.text, 'html.parser')
    soup.get_text()
    

    1、从网页爬取每日最新数据

    2、将数据追加存储到excel

    # !/usr/bin/python
    # -*-coding:utf-8 -*-
    """
     File        : spider.py
     Time        : 2024/1/17 10:00
     Author      : 天选之子
     Email       : 
     version     : python 3.10.11
     Description : 
    """
    import datetime
    import os
    
    import numpy
    import requests
    from bs4 import BeautifulSoup
    import pandas
    
    url = "https://qt.gtimg.cn"
    fund_code_list = ['sh510300', 'sz159995']
    target_path = r'excel存储位置'
    sheet_name = '存储的excel的sheet页'
    
    
    def get_fund_close_price(url_str):
        """
        获取基金收盘价
        """
        response = requests.get(url_str)
        soup = BeautifulSoup(response.text, 'html.parser')
        if soup is None:
            return '没找到'
        else:
            market = soup.get_text()
        return market.split('~')[4]
    
    
    def df_combiner(targetpath, dataframe, sheetname):
        """
        将来源excel合并到目标excel
        :param targetpath:
        :param dataframe:
        :param sheetname:
        :return: dataframe合并后的最终excel对象
        """
        if not os.path.exists(targetpath):
            return None
        tar_data_frame = pandas.DataFrame(pandas.read_excel(targetpath, sheet_name=sheetname, keep_default_na=False))
        tar_date = set(numpy.array(tar_data_frame['日期']).tolist())
        to_date = set(numpy.array(dataframe['日期']).tolist())
        if to_date.issubset(tar_date):
            tar_df_all = tar_data_frame
        else:
            if tar_data_frame is None:
                return dataframe
            tar_df_all = pandas.concat([tar_data_frame, dataframe], ignore_index=True)
        return tar_df_all
    
    
    def main():
        df_all = None
        for fund_code in fund_code_list:
            fund_url = f'{url}/?q={fund_code}'
            result = get_fund_close_price(fund_url)
            print("该只基金的收盘价为:", result)
            print(datetime.datetime.now().strftime('%Y-%m-%d'))
            # 创建一个DataFrame
            data = {'日期': [datetime.datetime.now().strftime('%Y%m%d')], '基金代码': [fund_code], '收盘价': [result]}
            df = pandas.DataFrame(data)
            df_all = pandas.concat([df_all, df], ignore_index=True)
    
        target_df = df_combiner(target_path, df_all, sheet_name)
        excel_writer = pandas.ExcelWriter(target_path)
        target_df.to_excel(excel_writer, index=False, sheet_name='基金收盘价')
        excel_writer.close()
    
    
    if __name__ == '__main__':
        main()
    
    
    

    三、展示

    将获取的excel数据展示成折线图,这里使用的是pyecharts,不多废话直接上代码

    # https://pyecharts.org/#/zh-cn/quickstart
    import numpy
    import pandas
    from pyecharts import options as opts
    from pyecharts.charts import Line, Page
    
    target_path = r'excel位置'
    sheet_name = '基金收盘价'
    fund_code_list = ['sh510300', 'sz159995']
    tar_data_frame = pandas.DataFrame(pandas.read_excel(target_path, sheet_name=sheet_name, keep_default_na=False))
    tar_data_frame = tar_data_frame.sort_values(by=['日期','基金代码'], ascending=[True, True])
    data_date = list(set(numpy.array(tar_data_frame['日期']).tolist()))
    data_date.sort()
    sh510300_date = numpy.array(tar_data_frame.loc[tar_data_frame['基金代码'] == 'sh510300']['收盘价']).tolist()
    sz159995_date = numpy.array(tar_data_frame.loc[tar_data_frame['基金代码'] == 'sz159995']['收盘价']).tolist()
    
    # 创建柱状图
    bar_chart = Line()
    bar_chart.add_xaxis(data_date)
    title_opts = opts.TitleOpts(title="月度销售额折线图"),
    bar_chart.add_yaxis(series_name='sh510300'
                        , linestyle_opts=opts.LineStyleOpts(color="red", width=2, is_show=True)
                        , itemstyle_opts=opts.ItemStyleOpts(color="red", border_width=1)
                        , is_smooth=True
                        , y_axis=sh510300_date)
    bar_chart.add_yaxis(series_name='sz159995_date'
                        , linestyle_opts=opts.LineStyleOpts(color="yellow", width=2, is_show=True)
                        , itemstyle_opts=opts.ItemStyleOpts(color="yellow", border_width=1)
                        , is_smooth=True
                        , y_axis=sz159995_date)
    bar_chart.set_global_opts(title_opts=opts.TitleOpts(title="基金收盘价格走势", is_show=True, pos_left='center')
                              , xaxis_opts=opts.AxisOpts(name="月份")
                              , yaxis_opts=opts.AxisOpts(name="收盘价(元)", min_=0, max_=10)
                              , legend_opts=opts.LegendOpts(pos_left='right'))
    
    page = Page(page_title='基金收盘价')
    page.add(line_chart)
    # 渲染图表到 HTML 文件
    page.render("基金收盘价.html")
    

    展示结果如下:
    在这里插入图片描述

  • 相关阅读:
    选择适合户外篷房企业的企业云盘解决方案
    elasticsearch常用命令
    SpringBoot Lombok的使用
    数据库的建立、增、删、改、查
    OkHttpClient请求方式详解,及常用OkHttpUtils配置工具类
    数据结构day7栈-链式栈原理及实现
    JavaWeb-汇总
    APScheduler-调度器 BackgroundScheduler
    java计算机毕业设计智能拼车系统源程序+mysql+系统+lw文档+远程调试
    【 Linux 】密钥对登录Ubuntu 20.04
  • 原文地址:https://blog.csdn.net/m0_51192710/article/details/139500490