• AI大模型探索之路-实战篇12: 构建互动式Agent智能数据分析平台:实现多轮对话控制


    系列篇章💥

    AI大模型探索之路-实战篇4:深入DB-GPT数据应用开发框架调研
    AI大模型探索之路-实战篇5:探索Open Interpreter开放代码解释器调研
    AI大模型探索之路-实战篇6:掌握Function Calling的详细流程
    AI大模型探索之路-实战篇7:Function Calling技术实战自动生成函数
    AI大模型探索之路-实战篇8:多轮对话与Function Calling技术应用
    AI大模型探索之路-实战篇9:探究Agent智能数据分析平台的架构与功能
    AI大模型探索之路-实战篇10:数据预处理的艺术:构建Agent智能数据分析平台的基础
    AI大模型探索之路-实战篇11: Function Calling技术整合:强化Agent智能数据分析平台功能



    一、前言

    在Agent智能数据分析平台的实战开发中,继我们之前关于Function Calling技术整合的讨论之后,本文将专注于实现一个核心功能——多轮对话控制系统。这一机制能够让用户通过自然语言与系统进行连续的交流,从而更准确、更高效地完成数据分析任务。

    二、引入背景知识库

    引入数据字典知识,作为大模型对话的背景知识库。

    1、定义OpenAI客户端

    定义大模型客户端,用于与大模型交互对话

    import openai
    import os
    import numpy as np
    import pandas as pd
    import json
    import io
    from openai import OpenAI
    import inspect
    import pymysql
    
    openai.api_key = os.getenv("OPENAI_API_KEY")
    
    client = OpenAI(api_key=openai.api_key)
    

    2、定义工具函数生成器

    定义一个函数,用于自动生成function calling功能需要的,工具函数信息体

    def auto_functions(functions_list):
        """
        Chat模型的functions参数编写函数
        :param functions_list: 包含一个或者多个函数对象的列表;
        :return:满足Chat模型functions参数要求的functions对象
        """
        def functions_generate(functions_list):
            # 创建空列表,用于保存每个函数的描述字典
            functions = []
            # 对每个外部函数进行循环
            for function in functions_list:
                # 读取函数对象的函数说明
                function_description = inspect.getdoc(function)
                # 读取函数的函数名字符串
                function_name = function.__name__
    
                system_prompt = '以下是某的函数说明:%s' % function_description
                user_prompt = '根据这个函数的函数说明,请帮我创建一个JSON格式的字典,这个字典有如下5点要求:\
                               1.字典总共有三个键值对;\
                               2.第一个键值对的Key是字符串name,value是该函数的名字:%s,也是字符串;\
                               3.第二个键值对的Key是字符串description,value是该函数的函数的功能说明,也是字符串;\
                               4.第三个键值对的Key是字符串parameters,value是一个JSON Schema对象,用于说明该函数的参数输入规范。\
                               5.输出结果必须是一个JSON格式的字典,只输出这个字典即可,前后不需要任何前后修饰或说明的语句' % function_name
    
                response = client.chat.completions.create(
                                  model="gpt-3.5-turbo",
                                  messages=[
                                    {"role": "system", "content": system_prompt},
                                    {"role": "user", "content": user_prompt}
                                  ]
                                )
                json_function_description=json.loads(response.choices[0].message.content.replace("```","").replace("json",""))
                json_str={"type": "function","function":json_function_description}
                functions.append(json_str)
            return functions
        
        max_attempts = 4
        attempts = 0
    
        while attempts < max_attempts:
            try:
                functions = functions_generate(functions_list)
                break  # 如果代码成功执行,跳出循环
            except Exception as e:
                attempts += 1  # 增加尝试次数
                print("发生错误:", e)
                if attempts == max_attempts:
                    print("已达到最大尝试次数,程序终止。")
                    raise  # 重新引发最后一个异常
                else:
                    print("正在重新运行...")
        return functions
    

    3、两次大模型API调用封装

    封装funcation calling中两次大模型API得调用

    def run_conversation(messages, functions_list=None, model="gpt-3.5-turbo"):
        """
        能够自动执行外部函数调用的对话模型
        :param messages: 必要参数,字典类型,输入到Chat模型的messages参数对象
        :param functions_list: 可选参数,默认为None,可以设置为包含全部外部函数的列表对象
        :param model: Chat模型,可选参数,默认模型为gpt-3.5-turbo
        :return:Chat模型输出结果
        """
        # 如果没有外部函数库,则执行普通的对话任务
        if functions_list == None:
            response = client.chat.completions.create(
                            model=model,
                            messages=messages,
                            )
            response_message = response.choices[0].message
            final_response = response_message.content
            
        # 若存在外部函数库,则需要灵活选取外部函数并进行回答
        else:
            # 创建functions对象
            tools = auto_functions(functions_list)
    
            # 创建外部函数库字典
            available_functions = {func.__name__: func for func in functions_list}
    
            # 第一次调用大模型
            response = client.chat.completions.create(
                            model=model,
                            messages=messages,
                            tools=tools,
                            tool_choice="auto", )
            response_message = response.choices[0].message
    
            tool_calls = response_message.tool_calls
            if tool_calls:
                messages.append(response_message) 
                for tool_call in tool_calls:
                    function_name = tool_call.function.name
                    function_to_call = available_functions[function_name]
                    function_args = json.loads(tool_call.function.arguments)
                    
                    function_response = function_to_call(**function_args)
                    messages.append(
                        {
                            "tool_call_id": tool_call.id,
                            "role": "tool",
                            "name": function_name,
                            "content": function_response,
                        }
                    ) 
                ## 第二次调用模型
                second_response = client.chat.completions.create(
                    model=model,
                    messages=messages,
                ) 
                # 获取最终结果
                final_response = second_response.choices[0].message.content
            else:
                final_response = response_message.content
                    
        return final_response
    

    4、user_demographics数据查询服务封装

    定义一个get_user_demographics函数,用于获取user_demographics 表的相关信息

    def get_user_demographics(sql_query):
        """
        用户获取user_demographics 表的相关信息
        :param sql_query: 字符串形式的SQL语句
        :return SQL查询的user_demographics 表的相关信息
        """
        mysql_pw="iquery_agent"
        
        connection = pymysql.connect(
        host='localhost',  # 数据库地址
        user='iquery_agent',  # 数据库用户名
        passwd=mysql_pw,  # 数据库密码
        db='iquery',  # 数据库名
        charset='utf8'  # 字符集选择utf8   
        )
        try:
            with connection.cursor() as cursor:
                sql = sql_query
                cursor.execute(sql)
                results = cursor.fetchall()
        finally:
            cursor.close()
        
        column_names = [desc[0] for desc in cursor.description]
    
        # 使用results和column_names创建DataFrame
        df = pd.DataFrame(results, columns=column_names)
            
        return df.to_json(orient = "records")         
    

    5、user_demographics函数信息生成测试

    使用工具函数生成器,对测试是否能够正常生成user_demographics相关数据查询的工具函数信息

    #定义工具函数列表(当前只有user_demographics信息获取的函数)
    functions_list = [get_user_demographics]
    
    #user_demographics相关数据查询的工具函数信息,生成测试
    tools = auto_functions(functions_list)
    tools
    

    生成的函数信息如下:
    在这里插入图片描述

    注意:结构生成不一定正确,大模型缺少稳定性;可能需要多次调用测试;也可以再生成函数中,加入校验;比如:如果缺失关键key、value,就让大模型重新生成。

    6、第一次数据查询对话测试

    使用自然语言对话的方式,进行数据查询分析

    messages=[
                {"role": "user", "content": "请问user_demographics表中个人属性为老年男性的数据总共有多少条?"}
            ]
        
    response = client.chat.completions.create(
            model="gpt-3.5-turbo",
            messages=messages,
            tools=tools,
            tool_choice="auto",  
        )
    
    response.choices[0].message       
    

    输出:

    ChatCompletionMessage(content=None, role='assistant', function_call=None, tool_calls=[ChatCompletionMessageToolCall(id='call_5VK3ywSsn76wNBfAEc17FaWr', function=Function(arguments='{"sql_query":"SELECT COUNT(*) FROM user_demographics WHERE age >= 60 AND gender = \'male\'"}', name='get_user_demographics'), type='function')])
    

    可以从结果中检查大模型是否正常找到自己生成的工具函数,以及生成的相关SQL是否正确;
    查询SQL中使用了年龄大于60岁,来查询老年人。

    7、读取数据字典

    读取本地的数据字典

    # 打开并读取Markdown文件
    with open('/root/autodl-tmp/iquery项目/data/数据字典/iquery数据字典.md', 'r', encoding='utf-8') as f:
        md_content = f.read()
        
    md_content
    

    输出

    '# iquery数据字典:iquery数据库数据字典\n\n本数据字典记录了iquery数据库中各张数据表的基本情况。\n\n## 1.user_demographics数据表\n\n- 基本解释\n\n  \u200b\t\tuser_demographics数据表记录了电信用户的个人基本情况,主要涵盖客户基本生物属性,包括性别、年龄状况、是否结婚以及是否经济独立等。\n\n- 数据来源\n\n  \u200b\tuser_demographics数据集由一线业务人员人工采集记录,并且通过回访确认相关信息,数据集的准确性和可信度都非常高。\n\n- 各字段说明\n\n| Column Name | Description | Value Range | Value Explanation | Type |\n|-------------|-------------|-------------|-------------------|------|\n| customerID | 客户ID,user_demographics数据表主键 |              | 由数字和字母组成的 | VARCHAR(255) |\n| gender | 用户的性别 | Female, Male | Female (女性), Male (男性) | VARCHAR(255) |\n| SeniorCitizen | 是否为老人 | 0, 1 | 0 (不是), 1 (是) | INT |\n| Partner | 用户是否有伴侣 | Yes, No | Yes (有), No (没有) | VARCHAR(255) |\n| Dependents | 用户经济是否独立,往往用于判断用户是否已经成年 | No, Yes | Yes (有), No (没有) | VARCHAR(255) |\n\n## 2.user_services数据表\n\n- 基本解释\n\n  \u200b        user_services数据表记录了每位用户订购电信服务的基本情况,截至目前,电信服务商提供了种类多样的服务,包括电话类服务和网络类服务等,本数据集表记录了每位用户订阅电信服务的基本情况。\n\n- 数据来源\n\n  \u200b\t\tuser_services数据表由后台系统自动创建生成,并未经过人工校验。\n\n- 各字段说明\n\n| Column Name | Description | Value Range | Value Explanation | Type |\n|-------------|-------------|-------------|-------------------|------|\n| customerID | 客户ID,user_services数据表主键 |  | 由数字和字母组成的 | VARCHAR(255) |\n| PhoneService | 用户是否有电话服务 | No, Yes | Yes (有), No (没有) | VARCHAR(255) |\n| MultipleLines | 用户是否开通了多条电话业务 | No phone service, No, Yes | Yes (有多条电话线业务), No (没有多条电话线业务), No phone service (没有电话服务) | VARCHAR(255) |\n| InternetService | 用户的互联网服务类型 | DSL, Fiber optic, No | DSL (DSL), Fiber optic (光纤), No (没有) | VARCHAR(255) |\n| OnlineSecurity | 是否开通网络安全服务 | No, Yes, No internet service | Yes(有)、No(无) or No internetservice(没有网路服务) | VARCHAR(255) |\n| OnlineBackup | 是否开通在线备份服务 | Yes, No, No internet service | Yes(有)、No(无) or No internetservice(没有网路服务) | VARCHAR(255) |\n| DeviceProtection | 是否开通设备保护服务 | No, Yes, No internet service | Yes(有)、No(无) or No internetservice(没有网路服务) | VARCHAR(255) |\n| TechSupport | 是否开通技术支持业务 | No, Yes, No internet service | Yes(有)、No(无) or No internetservice(没有网路服务) | VARCHAR(255) |\n| StreamingTV | 是否开通网络电视 | No, Yes, No internet service | Yes(有)、No(无) or No internetservice(没有网路服务) | VARCHAR(255) |\n| StreamingMovies | 是否开通网络电影 | No, Yes, No internet service | Yes(有)、No(无) or No internetservice(没有网路服务) | VARCHAR(255) |\n\n## 3.user_payments数据表\n\n- 基本解释\n\n  \u200b\t\tuser_payments数据表记录了每一位用户支付状况,既包括用户的支付方式和合同类型,同时也包含用户具体支付金额,包括月付金额和总金额等。\n\n- 数据来源\n\n  \u200b\t\tuser_payments数据表由后台自动记录生成,并未经过校验。\n\n- 各字段说明\n\n| Column Name | Description | Value Range | Value Explanation | Type |\n|-------------|-------------|-------------|-------------------|------|\n| customerID | 客户ID,user_payments数据表主键 |  | 由数字和字母组成的 | VARCHAR(255) |\n| Contract | 合同类型 | Month-to-month, One year, Two year | Month-to-month (月付), One year (一年付), Two year (两年付) | VARCHAR(255) |\n| PaperlessBilling | 是否无纸化账单 | Yes, No | Yes (是), No (否) | VARCHAR(255) |\n| PaymentMethod | 支付方式 | Electronic check, Mailed check, Bank transfer (automatic), Credit card (automatic) | Electronic check (电子检查), Mailed check (邮寄支票), Bank transfer (automatic) (银行转账), Credit card (automatic) (信用卡) | VARCHAR(255) |\n| MonthlyCharges | 月费用 |  | 用户平均每月支付费用 | FLOAT        |\n| TotalCharges | 总费用 |  | 截至目前用户总消费金额 | VARCHAR(255) |\n\n## 4.user_churn\n\n- 基本解释\n\n  \u200b\t\tuser_churn数据表记录了当前用户流失情况。\n\n- 数据来源\n\n  \u200b\t\tuser_churn数据表由后台自动创建并记录,当合同截至后但用户未续费,则判断该用户目前处于流失状态。\n\n- 各字段说明\n\n| Column Name | Description | Value Range | Value Explanation | Type |\n|-------------|-------------|-------------|-------------------|------|\n| customerID | 客户ID,user_churn数据表主键 |             | 由数字和字母组成的 | VARCHAR(255) |\n| Churn | 用户是否流失 | No, Yes | Yes (是), No (否) | VARCHAR(255) |\n\n'
    

    8、第二次数据查询对话测试

    将数据字典作为背景知识,再次使用自然语言对话的方式,进行数据查询分析

    messages=[
          {"role": "system", "content": md_content}, 
          {"role": "user", "content": "请问user_demographics表中个人属性为老年男性的数据总共有多少条?"}
    ]
    response = client.chat.completions.create(
            model="gpt-3.5-turbo",
            messages=messages,
            tools=tools,
            tool_choice="auto",  
        )
    
    response.choices[0].message
    

    输出:

    ChatCompletionMessage(content=None, role='assistant', function_call=None, tool_calls=[ChatCompletionMessageToolCall(id='call_e4LEDDcytWdGUx0m98plDpUa', function=Function(arguments='{"sql_query":"SELECT * FROM user_demographics WHERE SeniorCitizen = 1 AND gender = \'Male\'"}', name='get_user_demographics'), type='function')])
    

    通过输出结果可以看到,这一次数据查询中使用了SeniorCitizen 字段,因为背景知识中,这个字段是用来标识老人的,不需要通过年龄判断。
    在这里插入图片描述

    9、数据库基本信息查询测试

    调用大模型API查询数据库的基本情况信息

    messages=[
          {"role": "system", "content": md_content}, 
          {"role": "user", "content": "请帮我介绍下iquery这个数据库的基本情况"}
    ]
    response = client.chat.completions.create(
            model="gpt-3.5-turbo",
            messages=messages,
        )
    
    response.choices[0].message.content
    

    输出:

    'iquery数据库是一个用于电信用户数据分析的数据库,主要包括了四张数据表:user_demographics、user_services、user_payments和user_churn。这些数据表记录了电信用户的个人基本情况、订购的电信服务情况、支付情况以及流失情况。用户可以通过iquery数据库中的数据来进行用户行为分析、用户流失预测、产品定价优化等工作。每张数据表都有各自的字段说明,方便用户了解和利用数据库中的数据。'
    

    10、数据分析调用测试

    让大模型帮忙分析user_demographics数据表和user_services数据表的数据可信度。

    messages=[
          {"role": "system", "content": md_content}, 
          {"role": "user", "content": "user_demographics数据表和user_services数据表哪张表的数据可信度更高呢?"}
    ]
    response = client.chat.completions.create(
            model="gpt-3.5-turbo",
            messages=messages,
        )
    
    print(response.choices[0].message.content)
    

    输出:

    根据描述,user_demographics数据表由一线业务人员人工采集记录,并通过回访确认相关信息,数据集的准确性和可信度都非常高。而user_services数据表由后台系统自动生成,并未经过人工校验。因此,user_demographics数据表的数据可信度更高。
    

    三、实现交互确认

    在数据查询分析前,让大模型输出将要执行的SQL,让用户确认检查;同时咨询是否需要执行

    1、定义数据库基本信息获取函数

    定义一个获取数据库基本信息的工具函数

    def sql_inter(sql_query):
        """
        用于获取iquery数据库中各张表的有关相关信息,\
        核心功能是将输入的SQL代码传输至iquery数据库所在的MySQL环境中进行运行,\
        并最终返回SQL代码运行结果。需要注意的是,本函数是借助pymysql来连接MySQL数据库。
        :param sql_query: 字符串形式的SQL查询语句,用于执行对MySQL中iquery数据库中各张表进行查询,并获得各表中的各类相关信息
        :return:sql_query在MySQL中的运行结果。
        """
        
        mysql_pw = "iquery_agent"
        
        connection = pymysql.connect(
                host='localhost',  # 数据库地址
                user='iquery_agent',  # 数据库用户名
                passwd=mysql_pw,  # 数据库密码
                db='iquery',  # 数据库名
                charset='utf8'  # 字符集选择utf8
            )
        
        try:
            with connection.cursor() as cursor:
                # SQL查询语句
                sql = sql_query
                cursor.execute(sql)
    
                # 获取查询结果
                results = cursor.fetchall()
    
        finally:
            connection.close()
        
        
        return json.dumps(results)
    

    2、函数信息生成测试检查:

    #定义工具函数列表
    functions_list = [sql_inter]
    
    #工具函数信息生成
    tools = auto_functions(functions_list)
    tools
    

    输出:
    在这里插入图片描述

    检查生成的函数信息结构是否正确,是否有缺失的key、value

    3、数据分析测试

    messages = [
        {"role": "system", "content": md_content},
        {"role": "user", "content": "请问user_demographics数据表的主键和user_services数据表的主键是否完全一致?"}
    ]
    run_conversation(messages, functions_list=functions_list, model="gpt-3.5-turbo")
    

    输出:
    在这里插入图片描述

    4、定义SQL提取函数

    def extract_sql(json_str):
        # 提取并返回'sql_query'的值
        return json_str.get('sql_query', None)
    

    5、两次次大模型API两次调用封装改造

    改造二次大模型API两次调用的封装函数,引入用户确认的逻辑

    def check_code_run(messages, functions_list=None, model="gpt-3.5-turbo",auto_run = True):
        """
        能够自动执行外部函数调用的对话模型
        :param messages: 必要参数,字典类型,输入到Chat模型的messages参数对象
        :param functions_list: 可选参数,默认为None,可以设置为包含全部外部函数的列表对象
        :param model: Chat模型,可选参数,默认模型为gpt-3.5-turbo
        :return:Chat模型输出结果
        """
        # 如果没有外部函数库,则执行普通的对话任务
        if functions_list == None:
            response = client.chat.completions.create(
                            model=model,
                            messages=messages,
                            )
            response_message = response.choices[0].message
            final_response = response_message.content
            
        # 若存在外部函数库,则需要灵活选取外部函数并进行回答
        else:
            # 创建functions对象
            tools = auto_functions(functions_list)
            
    
            # 创建外部函数库字典
            available_functions = {func.__name__: func for func in functions_list}
    
            # 第一次调用大模型
            response = client.chat.completions.create(
                            model=model,
                            messages=messages,
                            tools=tools,
                            tool_choice="auto", )
            response_message = response.choices[0].message
            tool_calls = response_message.tool_calls
            if tool_calls:
                messages.append(response_message) 
                for tool_call in tool_calls:
                    function_name = tool_call.function.name
                    function_to_call = available_functions[function_name]
                    function_args = json.loads(tool_call.function.arguments)
                  
                  
                    if auto_run == False:
                        sql_query = extract_sql(function_args)
    
                        res = input('即将执行以下代码:%s。是否确认并继续执行(1),或者退出本次运行过程(2)' % sql_query)
                        if res == '2':
                            print("终止运行")
                            return None
                        else:
                            print("正在执行代码,请稍后...")
                            
                    function_response = function_to_call(**function_args)
                    messages.append(
                        {
                            "tool_call_id": tool_call.id,
                            "role": "tool",
                            "name": function_name,
                            "content": function_response,
                        }
                    ) 
                ## 第二次调用模型
                second_response = client.chat.completions.create(
                    model=model,
                    messages=messages,
                ) 
                # 获取最终结果
                final_response = second_response.choices[0].message.content
            else:
                final_response = response_message.content
        del messages
                    
        return final_response
    

    6、定义消息列表

    messages = [
        {"role": "system", "content": md_content},
        {"role": "user", "content": "请问iquery数据库下user_demographics表的第10条数据内容是?"}
    ]
    #函数列表查看
    functions_list
    

    在这里插入图片描述

    7、数据查询分析测试1

    check_code_run(messages, 
                   functions_list=functions_list, 
                   model="gpt-3.5-turbo", 
                   auto_run = False)
    

    输出:
    在这里插入图片描述

    8、数据查询分析测试2

    messages = [
        {"role": "system", "content": md_content},
        {"role": "user", "content": "请问iquery数据库下user_demographics表有多少条数据?"}
    ]
    check_code_run(messages, 
                   functions_list=functions_list, 
                   model="gpt-3.5-turbo", 
                   auto_run = False)
    

    输出:
    在这里插入图片描述

    9、数据查询分析测试3

    messages = [
        {"role": "system", "content": md_content},
        {"role": "user", "content": "请问iquery数据库下user_demographics表中,男性和女性的分别有多少人"}
    ]
    check_code_run(messages, 
                   functions_list=functions_list, 
                   model="gpt-3.5-turbo", 
                   auto_run = False)
    

    输出:
    在这里插入图片描述

    四、实现完整的多轮对话效果

    经过上述步骤的不断优化和测试,我们最终实现了一个完整的多轮对话控制系统。该系统不仅能够理解用户的查询意图,还能够在需要时向用户确认信息,从而使得整个数据分析过程更加透明、可控。

    import tiktoken
    
    def chat_with_inter(functions_list=None, 
                        prompt="你好呀", 
                        model="gpt-3.5-turbo", 
                        system_message=[{"role": "system", "content": "你是一个智能助手。"}], 
                        auto_run = True):
        
        # 创建函数列表对应的参数解释列表
        functions = auto_functions(functions_list)
        
        # 多轮对话阈值
        if 'gpt-4' in model:
            tokens_thr = 6000
        elif '16k' in model:
            tokens_thr = 14000
        else:
            tokens_thr = 3000
        
        messages = system_message
        messages.append({"role": "user", "content": prompt})
        ## 计算token大小
        embedding_model = "text-embedding-ada-002"
        # 模型对应的分词器(TOKENIZER)
        embedding_encoding = "cl100k_base"
        encoding = tiktoken.get_encoding(embedding_encoding)
        tokens_count = len(encoding.encode((prompt + system_message[0]["content"])))
        
        while True:           
            answer = check_code_run(messages, 
                                    functions_list=functions_list, 
                                    model=model, 
                                    auto_run = auto_run)
            
            
            print(f"模型回答: {answer}")
    
            # 询问用户是否还有其他问题
            user_input = input("您还有其他问题吗?(输入退出以结束对话): ")
            if user_input == "退出":
                del messages
                break
    
            # 记录新一轮问答
            messages.append({"role": "assistant", "content": answer})
            messages.append({"role": "user", "content": user_input})
            
            # 计算当前总token数
            tokens_count += len(encoding.encode((answer + user_input)))
            
            # 删除超出token阈值的对话内容
            while tokens_count >= tokens_thr:
                tokens_count -= len(encoding.encode(messages.pop(1)["content"]))
    chat_with_inter(functions_list=functions_list, 
                    prompt="我想根据iquery数据库中数据分析用户流失情况,请问需要用到iquery数据库中的哪几张表呢?", 
                    model="gpt-3.5-turbo", 
                    system_message=[{"role": "system", "content": md_content}], 
                    auto_run = False)
    

    对话效果
    在这里插入图片描述

    五、结语

    在本篇章中,我们进一步强化了Agent智能数据分析平台的功能,通过实现可控的多轮对话交互确认逻辑,极大地提升了用户体验和系统的安全性。这一进步将为未来更加复杂、更加智能化的数据分析平台的构建奠定坚实的基础。

    在这里插入图片描述

    🎯🔖更多专栏系列文章:AIGC-AI大模型探索之路

    😎 作者介绍:我是寻道AI小兵,资深程序老猿,从业10年+、互联网系统架构师,目前专注于AIGC的探索。
    📖 技术交流:建立有技术交流群,可以扫码👇 加入社群,500本各类编程书籍、AI教程、AI工具等你领取!
    如果文章内容对您有所触动,别忘了点赞、⭐关注,收藏!加入我,让我们携手同行AI的探索之旅,一起开启智能时代的大门!

  • 相关阅读:
    linux使用odbc
    JVM_常见【面试题】
    java线程控制
    ajax 学习记录
    js第十一章
    Nginx中对红黑树的使用
    golang与php的openssl_encrypt加解密
    Oracle定时任务
    记录 mac os 下一些好用的软件
    基于Javamail的邮件收发系统免费系统+LW
  • 原文地址:https://blog.csdn.net/xiaobing259/article/details/139372376