• Postgresql源码(134)优化器针对volatile函数的排序优化分析


    相关
    《Postgresql源码(133)优化器动态规划生成连接路径的实例分析》

    上一篇对路径的生成进行了分析,通过make_one_rel最终拿到了一个带着路径的RelOptInfo。本篇针对带volatile函数的排序场景继续分析subquery_planner的后续流程。

    subquery_planner
    	grouping_planner
    		query_planner
    			make_one_rel   <<< 上一篇
    		// 后续流程         <<< 本篇
    

    总结速查

    一句话总结:带有volatile的投影列会被SORT算子忽略,达到先排序在投影计算volatile的效果。

    • grouping_planner→make_one_rel层层生成path,每个path都会带pathtarget(不一定是SQL中最后需要的target列表),一般都是层层继承上来的。
    • make_one_rel生成的最终path中,会忽略volatile函数列,交给外层grouping_planner函数处理,所以生成的path中的pathtarget都是看不到volatile函数列的。
    • 这里一个关键逻辑就path中的pathtargetmake_sort_input_target计算出来列表的是不是一样的
      • 如果是一样的就不加投影节点,等后面加sort时(create_ordered_paths)先加sort在加投影,计算顺序就是先排序,在拿排序阶段投影(计算random函数)
      • 如果不一样就直接加投影节点,后面sort会加到投影上面,计算顺序就是先投影(计算random函数),再排序。
    • path中的pathtarget会忽略volatile函数。
    • make_sort_input_target中的volatile函数正常也会被忽略掉(实例3),除非volatile函数就是排序列(实例4)。

    最终效果是,投影列有volatile函数的SQL(函数非排序列),sort节点会忽略这类函数的执行,sort结束后,在投影节点使用sort的结果集来计算这类函数。

    实例3:
    在这里插入图片描述

    1 实例:简单join

    drop table student;
    create table student(sno int primary key, sname varchar(10), ssex int);
    insert into student values(1, 'stu1', 0);
    insert into student values(2, 'stu2', 1);
    insert into student values(3, 'stu3', 1);
    insert into student values(4, 'stu4', 0);
    
    drop table course;
    create table course(cno int primary key, cname varchar(10), tno int);
    insert into course values(20, 'meth', 10);
    insert into course values(21, 'english', 11);
    
    drop table teacher;
    create table teacher(tno int primary key, tname varchar(10), tsex int);
    insert into teacher values(10, 'te1', 1);
    insert into teacher values(11, 'te2', 0);
    
    drop table score;
    create table score (sno int, cno int, degree int);
    create index idx_score_sno on score(sno);
    insert into score values (1, 20, 100);
    insert into score values (1, 21, 89);
    insert into score values (2, 20, 99);
    insert into score values (2, 21, 90);
    insert into score values (3, 20, 87);
    insert into score values (3, 21, 20);
    insert into score values (4, 20, 60);
    insert into score values (4, 21, 70);
    
    
    explain 
    SELECT STUDENT.sname, COURSE.cname, SCORE.degree
    FROM STUDENT
    LEFT JOIN SCORE ON STUDENT.sno = SCORE.sno
    LEFT JOIN COURSE ON SCORE.cno = COURSE.cno;
    
                                      QUERY PLAN
    ------------------------------------------------------------------------------
     Hash Left Join  (cost=69.50..110.65 rows=2040 width=80)
       Hash Cond: (score.cno = course.cno)
       ->  Hash Right Join  (cost=34.75..70.53 rows=2040 width=46)
             Hash Cond: (score.sno = student.sno)
             ->  Seq Scan on score  (cost=0.00..30.40 rows=2040 width=12)
             ->  Hash  (cost=21.00..21.00 rows=1100 width=42)
                   ->  Seq Scan on student  (cost=0.00..21.00 rows=1100 width=42)
       ->  Hash  (cost=21.00..21.00 rows=1100 width=42)
             ->  Seq Scan on course  (cost=0.00..21.00 rows=1100 width=42)
    

    1.1 subquery_planner→grouping_planner

    grouping_planner
    	current_rel = query_planner(root, standard_qp_callback, &qp_extra);
    
    • current_rel:
      在这里插入图片描述
    	final_target = create_pathtarget(root, root->processed_tlist);
    
    • 得到final_target
      • final_target->exprs->elements[0] : {varno = 1, varattno = 2, vartype = 1043} STUDENT.sname
      • final_target->exprs->elements[1] : {varno = 4, varattno = 2, vartype = 1043} COURSE.cname
      • final_target->exprs->elements[2] : {varno = 2, varattno = 3, vartype = 23} SCORE.degree
    	if (parse->sortClause)
    		make_sort_input_target
    	if (activeWindows)
    	 	...
    	if (have_grouping)
    		...
    	if (parse->hasTargetSRFs)
    		...
    
    • apply_scanjoin_target_to_paths创建投影节点
      在这里插入图片描述
    	/* Apply scan/join target. */
    	scanjoin_target_same_exprs = list_length(scanjoin_targets) == 1
    		&& equal(scanjoin_target->exprs, current_rel->reltarget->exprs);
    	apply_scanjoin_target_to_paths(root, current_rel, scanjoin_targets,
    								   scanjoin_targets_contain_srfs,
    								   scanjoin_target_parallel_safe,
    								   scanjoin_target_same_exprs);
    
    • 继续
    	if (have_grouping)
    		...
    	if (activeWindows)
    		...
    	if (parse->distinctClause)
    		...
    	if (parse->sortClause)
    		create_ordered_paths
    
    • 创建空的最顶层节点
    	final_rel = fetch_upper_rel(root, UPPERREL_FINAL, NULL);
    
    • 遍历current_rel中所有的path,用add_path加入到最顶层节点中。
    • 其中limit、rowclock的场景需要特殊处理下。
    	foreach(lc, current_rel->pathlist)
    		if (parse->rowMarks)
    			create_lockrows_path
    		if (limit_needed(parse))
    			create_limit_path
    		add_path(final_rel, path);
    

    grouping_planner函数执行结束,最后拼接的final_rel在upper_rels里面记录:
    在这里插入图片描述
    pathlist最上层是投影节点:
    在这里插入图片描述

    1.2 standard_planner→subquery_planner

    subquery_planner中后续处理流程:

    计划生成步骤作用
    root = subquery_planner优化器入口,返回PlannerInfo,里面记录了一个最终的RelOptInfo相当于一张逻辑表,每个ROI都记录了多个path,表示不同的计算路径
    final_rel = fetch_upper_rel拿到最终的RelOptInfo
    best_path = get_cheapest_fractional_path在RelOptInfo中选择一个最优的path
    top_plan = create_plan→create_plan_recurse根据最优path生成计划

    2 实例:【简单join】【排序非投影列】【投影列无函数】

    drop table student;
    create table student(sno int primary key, sname varchar(10), ssex int);
    insert into student values(1, 'stu1', 0);
    insert into student values(2, 'stu2', 1);
    insert into student values(3, 'stu3', 1);
    insert into student values(4, 'stu4', 0);
    
    drop table course;
    create table course(cno int primary key, cname varchar(10), tno int);
    insert into course values(20, 'meth', 10);
    insert into course values(21, 'english', 11);
    
    drop table teacher;
    create table teacher(tno int primary key, tname varchar(10), tsex int);
    insert into teacher values(10, 'te1', 1);
    insert into teacher values(11, 'te2', 0);
    
    drop table score;
    create table score (sno int, cno int, degree int);
    create index idx_score_sno on score(sno);
    insert into score values (1, 20, 100);
    insert into score values (1, 21, 89);
    insert into score values (2, 20, 99);
    insert into score values (2, 21, 90);
    insert into score values (3, 20, 87);
    insert into score values (3, 21, 20);
    insert into score values (4, 20, 60);
    insert into score values (4, 21, 70);
    
    
    explain verbose
    SELECT STUDENT.sname, COURSE.cname, SCORE.degree
    FROM STUDENT
    LEFT JOIN SCORE ON STUDENT.sno = SCORE.sno
    LEFT JOIN COURSE ON SCORE.cno = COURSE.cno
    ORDER BY COURSE.cno;
    
                                          QUERY PLAN
    --------------------------------------------------------------------------------------
     Sort  (cost=3.44..3.46 rows=8 width=19)
       Output: student.sname, course.cname, score.degree, course.cno
       Sort Key: course.cno
       ->  Hash Left Join  (cost=2.14..3.32 rows=8 width=19)
             Output: student.sname, course.cname, score.degree, course.cno
             Inner Unique: true
             Hash Cond: (score.cno = course.cno)
             ->  Hash Right Join  (cost=1.09..2.21 rows=8 width=13)
                   Output: student.sname, score.degree, score.cno
                   Inner Unique: true
                   Hash Cond: (score.sno = student.sno)
                   ->  Seq Scan on public.score  (cost=0.00..1.08 rows=8 width=12)
                         Output: score.sno, score.cno, score.degree
                   ->  Hash  (cost=1.04..1.04 rows=4 width=9)
                         Output: student.sname, student.sno
                         ->  Seq Scan on public.student  (cost=0.00..1.04 rows=4 width=9)
                               Output: student.sname, student.sno
             ->  Hash  (cost=1.02..1.02 rows=2 width=10)
                   Output: course.cname, course.cno
                   ->  Seq Scan on public.course  (cost=0.00..1.02 rows=2 width=10)
                         Output: course.cname, course.cno
    

    2.1 grouping_planner

    grouping_planner
    	current_rel = query_planner(root, standard_qp_callback, &qp_extra);
    	final_target = create_pathtarget(root, root->processed_tlist);
    	if (parse->sortClause)
    		sort_input_target = make_sort_input_target(root, final_target, &have_postponed_srfs);
    

    make_sort_input_target函数的作用:

    • 排序列可能不在最终的投影列里面,需要特殊处理下。
    • 易变函数和成本很高的函数需要再投影列中识别出来,先排序,在计算。
      • 因为1:sort limit场景可以少算一些。
      • 因为2:易变函数每次算都可能不一样,先排序好了再算有利于结果集稳定,例如current_timestamp这种,期望是排序后给出的每一样的时间都是递增的,如果先排序在计算就能得到这种效果。

    生成的final_target和sort_input_target相同,因为没看到srf函数、易变函数。

    final_target同sort_input_targetVar指向列sortgrouprefs
    final_target->exprs->elements[0]varno = 1, varattno = 2, vartype = 1043STUDENT.sname0
    final_target->exprs->elements[1]varno = 4, varattno = 2, vartype = 1043COURSE.cname0
    final_target->exprs->elements[2]varno = 2, varattno = 3, vartype = 23SCORE.degree0
    final_target->exprs->elements[3]varno = 4, varattno = 1, vartype = 23COURSE.cno1

    grouping_planner继续执行,开始生成排序path:

    	...
    	if (parse->sortClause)
    		current_rel = create_ordered_paths(root,
    										   current_rel,
    										   final_target,
    										   final_target_parallel_safe,
    										   have_postponed_srfs ? -1.0 :
    										   limit_tuples);
    

    grouping_planner→create_ordered_paths

    create_ordered_paths
    	// 创建一个排序节点
    	ordered_rel = fetch_upper_rel(root, UPPERREL_ORDERED, NULL);
    
    	// 拿到path入口,目前顶层是T_ProjectionPath,就一个节点
    	foreach(lc, input_rel->pathlist)
    		// 判断input_path->pathkeys是不是有序的?
    		// 因为现在计划树是hashjoin,每一列都是无序的,所以input_path->pathkeys是空的,需要排序
    		is_sorted = pathkeys_count_contained_in(root->sort_pathkeys, input_path->pathkeys, &presorted_keys);
    		if (is_sorted)
    			sorted_path = input_path;
    		else
    			sorted_path = (Path *) create_sort_path(root,
    														ordered_rel,
    														input_path,
    														root->sort_pathkeys,
    														limit_tuples);
    		
    
    • 输入的path顶层节点是project本来没有带pathkeys信息,这里创建一个sort节点放在上面,加入pathkey信息。
    • 但生成的sortpath没看到排序列的信息?
    • 排序信息在基类path的pathkeys中。
    sorted_path = 
    { path = 
      { type = T_SortPath, 
        pathtype = T_Sort, 
        parent = 0x2334030, 
        pathtarget = 0x2333ef0, 
        param_info = 0x0, 
        parallel_aware = false, parallel_safe = true, parallel_workers = 0, 
        rows = 8, 
        startup_cost = 3.4437500000000005, 
        total_cost = 3.4637500000000006, 
        pathkeys = 0x232e018}, 
      subpath = 0x2333a00}
    

    T_PathKey每个pathkey(排序列)都对应了一个T_EquivalenceClass,T_EquivalenceClass中记录了排序的具体信息。

    { type = T_PathKey, 
      pk_eclass = 0x232bf88, 
      pk_opfamily = 1976, 
      pk_strategy = 1, 
      pk_nulls_first = false}
    

    T_EquivalenceClass中的ec_members记录了排序列信息Var{varno = 4, varattno = 1}

    { type = T_EquivalenceClass, 
      ec_opfamilies = 0x232ddf8,    // List{ 1976 }
      ec_collation = 0, 
      ec_members = 0x232df48,  // List { EquivalenceMember }
                               // EquivalenceMember{
                               //   type = T_EquivalenceMember, 
                               //   em_expr = 0x232de68,  Var{varno = 4, varattno = 1}
                               //   em_relids = 0x232de48, 
                               //   em_is_const = false, 
                               //   em_is_child = false, 
                               //   em_datatype = 23, 
                               //   em_jdomain = 0x2329158, em_parent = 0x0}
      ec_sources = 0x0, 
      ec_derives = 0x0, 
      ec_relids = 0x232df28,
      ec_has_const = false, 
      ec_has_volatile = false, 
      ec_broken = false, 
      ec_sortref = 1, 
      ec_min_security = 4294967295, 
      ec_max_security = 0, 
      ec_merged = 0x0}
    

    生成排序节点后的计划:

    • sort节点的target是四列,虽然sql只写了三列,但有一列是排序需要的,也会加到pathtarget中。
      在这里插入图片描述

    3 实例:【简单join】【排序非投影列】【投影列中有volatile函数】

    drop table student;
    create table student(sno int primary key, sname varchar(10), ssex int);
    insert into student values(1, 'stu1', 0);
    insert into student values(2, 'stu2', 1);
    insert into student values(3, 'stu3', 1);
    insert into student values(4, 'stu4', 0);
    
    drop table course;
    create table course(cno int primary key, cname varchar(10), tno int);
    insert into course values(20, 'meth', 10);
    insert into course values(21, 'english', 11);
    
    drop table teacher;
    create table teacher(tno int primary key, tname varchar(10), tsex int);
    insert into teacher values(10, 'te1', 1);
    insert into teacher values(11, 'te2', 0);
    
    drop table score;
    create table score (sno int, cno int, degree int);
    create index idx_score_sno on score(sno);
    insert into score values (1, 20, 100);
    insert into score values (1, 21, 89);
    insert into score values (2, 20, 99);
    insert into score values (2, 21, 90);
    insert into score values (3, 20, 87);
    insert into score values (3, 21, 20);
    insert into score values (4, 20, 60);
    insert into score values (4, 21, 70);
    
    
    explain verbose
    SELECT STUDENT.sname, random(), SCORE.degree
    FROM STUDENT
    LEFT JOIN SCORE ON STUDENT.sno = SCORE.sno
    LEFT JOIN COURSE ON SCORE.cno = COURSE.cno
    ORDER BY COURSE.cno;
                                             QUERY PLAN
    --------------------------------------------------------------------------------------------
     Result  (cost=3.44..3.56 rows=8 width=21)
       Output: student.sname, random(), score.degree, course.cno
       ->  Sort  (cost=3.44..3.46 rows=8 width=13)
             Output: student.sname, score.degree, course.cno
             Sort Key: course.cno
             ->  Hash Left Join  (cost=2.14..3.32 rows=8 width=13)
                   Output: student.sname, score.degree, course.cno
                   Inner Unique: true
                   Hash Cond: (score.cno = course.cno)
                   ->  Hash Right Join  (cost=1.09..2.21 rows=8 width=13)
                         Output: student.sname, score.degree, score.cno
                         Inner Unique: true
                         Hash Cond: (score.sno = student.sno)
                         ->  Seq Scan on public.score  (cost=0.00..1.08 rows=8 width=12)
                               Output: score.sno, score.cno, score.degree
                         ->  Hash  (cost=1.04..1.04 rows=4 width=9)
                               Output: student.sname, student.sno
                               ->  Seq Scan on public.student  (cost=0.00..1.04 rows=4 width=9)
                                     Output: student.sname, student.sno
                   ->  Hash  (cost=1.02..1.02 rows=2 width=4)
                         Output: course.cno
                         ->  Seq Scan on public.course  (cost=0.00..1.02 rows=2 width=4)
                               Output: course.cno
    

    3.1 grouping_planner→make_one_rel生成的RelOptInfo→reltarget

    make_one_rel前:

    准备连接的RelOptInfo在simple_rel_array数组中,这里关注下三个RelOptInfo的reltarget:

    (gdb) plist root->simple_rel_array[1]->reltarget->exprs
    $67 = 2
    $68 = {ptr_value = 0x3083218, int_value = 50868760, oid_value = 50868760, xid_value = 50868760}
    $69 = {ptr_value = 0x30ab8b8, int_value = 51034296, oid_value = 51034296, xid_value = 51034296}
    (gdb) p root->simple_rte_array[1]->relid
    $70 = 16564
    
    root→simple_rel_array[i]simple_rel_array[i]→reltarget->exprsrelid
    1varno = 1, varattno = 2, vartype = 104316564 student.sname
    1varno = 1, varattno = 1, vartype = 2316564 student.sno
    2varno = 2, varattno = 3, vartype = 2316579 score.degree
    2varno = 2, varattno = 1, vartype = 2316579 score.cno
    2varno = 2, varattno = 2, vartype = 2316579 score.sno
    4varno = 4, varattno = 1, vartype = 2316569 course.cno
    SELECT STUDENT.sname, random(), SCORE.degree
    FROM STUDENT
    LEFT JOIN SCORE ON STUDENT.sno = SCORE.sno
    LEFT JOIN COURSE ON SCORE.cno = COURSE.cno
    ORDER BY COURSE.cno;
    

    make_one_rel生成后:

    final_rel->reltarget->exprs
    1varno = 1, varattno = 2, vartype = 1043投影第1列:STUDENT.sname
    2varno = 2, varattno = 3, vartype = 23投影第3列:SCORE.degree
    3varno = 4, varattno = 1, vartype = 23排序列:COURSE.cno

    3.2 grouping_planner→make_sort_input_target规律v函数生成排序target

    final_target = create_pathtarget(root, root->processed_tlist);拿到的final_target:

    final_targetVar / FuncExpr指向列sortgrouprefs
    final_target->exprs->elements[0]varno = 1, varattno = 2, vartype = 1043STUDENT.sname0
    final_target->exprs->elements[1]funcid = 1598, funcresulttype = 701random()0
    final_target->exprs->elements[2]varno = 2, varattno = 3, vartype = 23SCORE.degree0
    final_target->exprs->elements[3]varno = 4, varattno = 1, vartype = 23COURSE.cno1

    make_sort_input_target拿到的sort_input_target,过滤掉了random列:

    sort_input_targetVar / FuncExpr指向列sortgrouprefs
    sort_input_target->exprs->elements[0]varno = 1, varattno = 2, vartype = 1043STUDENT.sname0
    sort_input_target->exprs->elements[1]varno = 2, varattno = 3, vartype = 23SCORE.degree0
    sort_input_target->exprs->elements[2]varno = 4, varattno = 1, vartype = 23COURSE.cno1

    实例2中,apply_scanjoin_target_to_paths会先挂投影节点,后面的create_ordered_paths在创建顶层的排序节点,为什么这里的投影节点在最上层?因为有volatile函数在,需要先排序,在到投影节点上计算random函数

    3.3 grouping_planner→apply_scanjoin_target_to_paths

    		final_target = create_pathtarget(root, root->processed_tlist);
    		...
    		sort_input_target = make_sort_input_target(...);
    		...
    		grouping_target = sort_input_target;
    		...
    		scanjoin_target = grouping_target;
    		...
    		scanjoin_targets = list_make1(scanjoin_target);
    		...
    		scanjoin_target_same_exprs = list_length(scanjoin_targets) == 1
    			&& equal(scanjoin_target->exprs, current_rel->reltarget->exprs);
    		...
    		// 1 确定没有SRF  list_length(scanjoin_targets) == 1
    		// 2 这里make_one_rel出来的current_rel和上面make_sort_input_target计算出来的投影列一样,都过滤掉了v函数,剩下三列
    		// scanjoin_target_same_exprs == true
    
    		scanjoin_target_same_exprs = list_length(scanjoin_targets) == 1
    			&& equal(scanjoin_target->exprs, current_rel->reltarget->exprs);
    		apply_scanjoin_target_to_paths(root, current_rel, scanjoin_targets,
    									   scanjoin_targets_contain_srfs,
    									   scanjoin_target_parallel_safe,
    

    注意:

    1. scanjoin_target->exprs:表示最终结果需要的targetlist。
    2. current_rel->reltarget->exprs:表示当前生成path中带的targetlist。
    3. 生成path的路径需要和scanjoin_target一致,所以进入下面函数判断是否生成投影节点。
    4. 如果相同,scanjoin_target_same_exprs==true,则不生成投影节点。
    5. 如果不同,scanjoin_target_same_exprs==false,则调用create_projection_path传入scanjoin_target,生成投影节点。

    在apply_scanjoin_target_to_paths中:

    apply_scanjoin_target_to_paths
    	...
    	...
    	foreach(lc, rel->pathlist)
    	{
    		Path	   *subpath = (Path *) lfirst(lc);
    
    		if (tlist_same_exprs)
    			// scanjoin_target->sortgrouprefs = [0, 0, 1] 表示第三列是排序列
    			// 因为现在的scanjoin_target(同sort_input_target)中只有三列,投影列1、3和排序列,参考上面sort_input_target表格。
    			subpath->pathtarget->sortgrouprefs = scanjoin_target->sortgrouprefs;
    		else
    		{
    			Path	   *newpath;
    			newpath = (Path *) create_projection_path(root, rel, subpath,
    													  scanjoin_target);
    			lfirst(lc) = newpath;
    		}
    	}
    

    3.4 grouping_planner→create_ordered_paths

    继续成成排序node:

    grouping_planner
    	...
    	if (parse->sortClause)
    				current_rel = create_ordered_paths(root,
    										   current_rel,
    										   final_target,
    										   final_target_parallel_safe,
    										   have_postponed_srfs ? -1.0 :
    										   limit_tuples);
    
    • create_ordered_paths最重要的入参就是final_target,保存了全部的列信息和排序列的位置sortgrouprefs。
    • 注意前面生成path中的reltarget已经过滤了random列,但这里没有过滤,需要全量的信息。
    final_targetVar / FuncExpr指向列sortgrouprefs
    final_target->exprs->elements[0]varno = 1, varattno = 2, vartype = 1043STUDENT.sname0
    final_target->exprs->elements[1]funcid = 1598, funcresulttype = 701random()0
    final_target->exprs->elements[2]varno = 2, varattno = 3, vartype = 23SCORE.degree0
    final_target->exprs->elements[3]varno = 4, varattno = 1, vartype = 23COURSE.cno1
    1. 注意:这里create_sort_path为hashjoin节点上面加了一层sort节点,sort节点的pathtarget继承了hash节点的pathtarget,也就是三列(没有random函数列)。
    2. 注意:这里的target是上面表格中的final_target,也就是四列(带random函数)。
    3. 加了sort节点后,发现这里不相同,所以开始增加投影列apply_projection_to_path。
    create_ordered_paths
    	ordered_rel = fetch_upper_rel(root, UPPERREL_ORDERED, NULL);
    	
    	foreach(lc, input_rel->pathlist)
    		is_sorted = pathkeys_count_contained_in
    		if (is_sorted)
    			sorted_path = input_path;
    		else
    			sorted_path = (Path *) create_sort_path(...)
    
    		// 生成sorted_path
    		// {type = T_SortPath, pathtype = T_Sort, pathtarget = 三列 }
    		
    		if (sorted_path->pathtarget != target)
    			sorted_path = apply_projection_to_path(root, ordered_rel, sorted_path, target);
    		
    		// 生成投影列
    		// {type = T_ProjectionPath, pathtype = T_Result, pathtarget = 四列 }
    

    最终生成PATH:

    SELECT STUDENT.sname, random(), SCORE.degree
    FROM STUDENT
    LEFT JOIN SCORE ON STUDENT.sno = SCORE.sno
    LEFT JOIN COURSE ON SCORE.cno = COURSE.cno
    ORDER BY COURSE.cno;
    

    最终效果:
    在这里插入图片描述

    4 实例:【简单join】【排序volatile函数】【投影列中有volatile函数】

    drop table student;
    create table student(sno int primary key, sname varchar(10), ssex int);
    insert into student values(1, 'stu1', 0);
    insert into student values(2, 'stu2', 1);
    insert into student values(3, 'stu3', 1);
    insert into student values(4, 'stu4', 0);
    
    drop table course;
    create table course(cno int primary key, cname varchar(10), tno int);
    insert into course values(20, 'meth', 10);
    insert into course values(21, 'english', 11);
    
    drop table teacher;
    create table teacher(tno int primary key, tname varchar(10), tsex int);
    insert into teacher values(10, 'te1', 1);
    insert into teacher values(11, 'te2', 0);
    
    drop table score;
    create table score (sno int, cno int, degree int);
    create index idx_score_sno on score(sno);
    insert into score values (1, 20, 100);
    insert into score values (1, 21, 89);
    insert into score values (2, 20, 99);
    insert into score values (2, 21, 90);
    insert into score values (3, 20, 87);
    insert into score values (3, 21, 20);
    insert into score values (4, 20, 60);
    insert into score values (4, 21, 70);
    
    
    explain verbose
    SELECT STUDENT.sname, random(), SCORE.degree
    FROM STUDENT
    LEFT JOIN SCORE ON STUDENT.sno = SCORE.sno
    LEFT JOIN COURSE ON SCORE.cno = COURSE.cno
    ORDER BY random();
    
                                       QUERY PLAN
    --------------------------------------------------------------------------------
     Sort  (cost=2.35..2.37 rows=8 width=17)
       Output: student.sname, (random()), score.degree
       Sort Key: (random())
       ->  Hash Right Join  (cost=1.09..2.23 rows=8 width=17)
             Output: student.sname, random(), score.degree
             Inner Unique: true
             Hash Cond: (score.sno = student.sno)
             ->  Seq Scan on public.score  (cost=0.00..1.08 rows=8 width=12)
                   Output: score.sno, score.cno, score.degree
             ->  Hash  (cost=1.04..1.04 rows=4 width=9)
                   Output: student.sname, student.sno
                   ->  Seq Scan on public.student  (cost=0.00..1.04 rows=4 width=9)
                         Output: student.sname, student.sno
    

    4.1 make_one_rel结果

    第一步:拿到RelOptInfo
    current_rel = query_planner(root, standard_qp_callback, &qp_extra);

    current_rel->reltarget中忽略了random函数:

    { 
      type = T_PathTarget, 
      exprs = 
        {
        	Var{varno = 1, varattno = 2, vartype = 1043}, // STUDENT.sname
        	Var{varno = 2, varattno = 3, vartype = 23}    // SCORE.degree
        }, 
      sortgrouprefs = 0x0 }
    

    4.2 拿到final_target

    final_target = create_pathtarget(root, root->processed_tlist);

    {
     	type = T_PathTarget, 
     	exprs = 
     	{
     		Var{varno = 1, varattno = 2, vartype = 1043},         // STUDENT.sname
     		FuncExpr {xpr = {type = T_FuncExpr}, funcid = 1598},  // random()
     		Var{varno = 2, varattno = 3, vartype = 23}            // SCORE.degree
     	}, 
     	sortgrouprefs = [0, 1, 0]
    }
    

    4.3 构造排序target:make_sort_input_target

    sort_input_target = make_sort_input_target(root, final_target, &have_postponed_srfs);

    {
    	type = T_PathTarget,
    	 exprs = 
    	 {
     		Var{varno = 1, varattno = 2, vartype = 1043},         // STUDENT.sname
     		FuncExpr {xpr = {type = T_FuncExpr}, funcid = 1598},  // random()
     		Var{varno = 2, varattno = 3, vartype = 23}            // SCORE.degree
    	 }, 
    	 sortgrouprefs = [0, 1, 0]
    }
    

    4.4 apply_scanjoin_target_to_paths增加投影

    apply_scanjoin_target_to_paths执行后,增加投影节点:

    { path = {type = T_ProjectionPath, pathtype = T_Result }
    

    4.5 create_ordered_paths后增加排序节点在最顶层

    { path = {type = T_SortPath, pathtype = T_Sort }
    

    在这里插入图片描述

  • 相关阅读:
    《知识点累积》HTML+JS+CSS
    解决虚拟机centos8无法连接外网,ping: www.baidu.com: 未知的名称或服务
    高云FPGA系列教程(8):ARM串口数据接收(中断和轮询方式)
    智能安防监控如何助力汽车4S店信息化精细化管理?最大程度做到降本增效?
    SwiftUI 中使用 SpriteKit 创建雨动画效果(教程含源码)
    vue源码分析(四)——vue 挂载($mount)的详细过程
    mysql表的导出和导入
    Win7显示屏幕亮度在哪里可以调节
    JS中执行上下文和执行栈是什么?
    【多线程】阻塞队列、定时器、线程安全的单例模式的原理及实现
  • 原文地址:https://blog.csdn.net/jackgo73/article/details/139177710