• 素数判定算法 初级


    前置知识

    Cpp实现

    基础算法

    // base method
    bool basement(int num)
    {
    	for (int i = 2; i <= sqrt(num); ++i)
    	{
    		if (num % i == 0)
    			return false;
    	}
    	return true;
    }
    

    证明

    筛法初步

    根据初等数学的知识,如果一个数不是2的倍数,那么它肯定不是2的倍数的倍数,所以,进一步的我们可以对上面的基础算法进行优化

    // sieve first step
    bool sieve2Method(int num)
    {
    	if (num == 2)
    		return true;
    	if (num % 2 == 0 || num < 2)
    		return false;
    	else
    	{
    		for (int i = 3; i * i <= num; i += 2)
    		{
    			if (num % i == 0)
    			{
    				return false;
    			}
    		}
    		return true;
    	}
    }
    

    轮转筛法

    6k ± 1 形式轮换筛法(轮转筛法)(Wheel Factorization)。

    轮转筛法的基本原理是利用模数(在这里是6)的性质来减少需要检查的数。具体到6k ± 1形式,这个形式背后的理由如下:

    • 整数 n 可以表示为 6𝑘+𝑟,其中 𝑟 是0到5之间的一个整数。
    • 对于 𝑟=0,2,3,4,这些数都可以被2或3整除(即它们是合数)。
    • 只有 𝑟=1 和 𝑟=5(即 6𝑘+1 和 6𝑘−1)可能是质数。
    bool isPrime_3(int num)
    {
    	if (num == 2 || num == 3)
    		return 1;
    	// 不在6的倍数两侧的一定不是质数
    	if (num % 6 != 1 && num % 6 != 5)
    		return 0;
    	int tmp = sqrt(num);
    	// 在6的倍数两侧的也可能不是质数
    	for (int i = 5; i <= tmp; i += 6)
    		if (num % i == 0 || num % (i + 2) == 0)
    			return 0;
    	// 排除所有,剩余的是质数
    	return 1;
    }
    

    埃拉托斯特尼筛法生成素数表

    根据上面我们的初步想法,我们可以进一步的将用于筛选的因子扩大。
    但是,这种筛法的核心思想之一是:
    如何确定筛选因子
    既然我们要做到高效,那么这些筛选因子之间的筛取最好没有重合,或者重合度很小,至少它不应该完全重复筛取,对吧?
    考虑2,3,4这三个数。
    经过简单运算,我们知道将3作为筛选因子,是可以筛取到2晒不出的数字的,比如说9,但是4,因为它有因子2,所以它所有筛取的数字,均早就被2筛取过了。
    所以,我们应该选取素数作为筛取因子。

    std::vector<bool> sieveOfEratosthenes(int n)
    {
    	std::vector<bool> isPrime(n + 1, true);
    	isPrime[0] = isPrime[1] = false; // 0和1不是素数
    
    	for (int p = 2; p <= std::sqrt(n); ++p)
    	{
    		if (isPrime[p])
    		{
    			for (int i = p * p; i <= n; i += p)
    			{
    				isPrime[i] = false;
    			}
    		}
    	}
    	return isPrime;
    }
    

    但是这里面还有一些实现细节,需要注意:

    • 初始化0 1 索引为false,
    • p <= sqrt(n)
    • i = p * p

    我们一个个来说,1 略
    2 为什么p<=sqrt(n),这样可以筛全吗?
    是可以的,首先我们初始化值为false,这意味着我们只需要筛选出 1 ~ n中的合数即可。
    又根据我们上面对于基本方法的循环范围的证明,所以,只要一个数是合数,那么它肯定会在2~ $\sqrt{ n }$ 之间
    所以,我们可以通过反向推导,如果某一个因子,能够通过倍加自己,或者可以理解为以自己为步长进行步进,那么他肯定能够到达那些以它为因子的合数位置上

    3 为什么 内层的i要初始化为 $p * p$ ,而不是 $p * 2$之类的
    这是因为要防止和之前已经筛过的部分发生重合,比如3个2和2个3

    欧拉筛法

    从上面埃氏筛法,我们确立了可以通过筛取合数,从而反向获取素数的思路。但显然,它仍有优化的空间,那就是重复的筛取。而欧拉筛法正为此而生。

    欧拉筛,又称线性筛,时间复杂度只有O(n)

    在埃氏筛法的基础上,让每一个合数都只被它的最小质因子筛选一次,以达到不重复筛选的目的,大大地节省了时间,从埃氏筛的O(n2)降到O(n)级别

    我们想要阻止重复标记的发生,就需要一种规则,也就是说只让标记以某一种特定的形式or规律被标记,在欧拉筛法中,这表现为,只用最小素因子去标记

    为了知道最小素因子,我们很自然地需要一个表维护已知的素数

    欧拉筛法正确性的证明

    实现

    vector<int> eulerSieve(int n)
    {
    	std::vector<bool> isPrime(n + 1, true);
    	std::vector<int> primes;         // 素数集合
    	isPrime[0] = isPrime[1] = false; // 0和1不是素数
    
    	for (int i = 2; i <= n; ++i)
    	{
    		if (isPrime[i])
    		{
    			primes.push_back(i);
    		}
    		for (int j = 0; j < primes.size() && i * primes[j] <= n; ++j)
    		{
    			isPrime[i * primes[j]] = false;
    			if (i % primes[j] == 0)
    				break;
    		}
    	}
    	return primes;
    }
    

    Miller-Rabin算法。
    暂时不看~

    Miller-Rabin算法

    Miller-Rabin算法是一种概率性质数测试算法,可以用来判断一个大整数是否为质数。该算法基于数论中的一些深刻性质,其优点在于对大数的判断效率非常高。虽然它是一个概率算法,但通过多次测试,可以将错误率降到非常低。

    Miller-Rabin算法步骤

    Miller-Rabin算法基于Fermat小定理以及以下两个重要的数学性质:

    1. 如果 𝑛 是一个质数,则对于任何整数 𝑎 满足 $1≤𝑎≤𝑛−1$,有 $𝑎^{n-1} ≡ 1 mod  𝑛$。
    2. 如果 𝑛 是一个奇质数,则存在一个唯一的表达式 $𝑛−1=2^{s}⋅𝑑$,其中 𝑑 是一个奇数,$𝑠≥1$。

    具体步骤

    1. 将 𝑛−1 表示为 $2^{s}⋅𝑑$:

      • 例如,对于 𝑛=15n=15,我们有 𝑛−1=14n−1=14,即 14=2⋅714=2⋅7,这里 𝑑=7d=7 和 𝑠=1s=1。
    2. 随机选择一个整数 𝑎 其中$1 \le a \le n-1$

      • 如果存在 $𝑎𝑑≡1mod  𝑛$,则 𝑛n 可能是一个质数。
      • 对于 𝑗=0,1,…,𝑠−1,如果存在 $𝑎{2𝑗⋅𝑑}≡−1mod  𝑛$,则 𝑛 可能是一个质数。
    3. 重复上述测试 k 次:

      • 选择不同的 𝑎 进行多次测试。
      • 如果所有测试均通过,则 𝑛 很可能是一个质数。
      • 如果有一次测试失败,则 𝑛 不是质数。

    Miller-Rabin算法的伪代码

    #include 
    #include 
    #include 
    
    // 使用快速幂算法计算 (base^exponent) % mod
    long long mod_exp(long long base, long long exponent, long long mod) {
        long long result = 1;
        base = base % mod;
        while (exponent > 0) {
            if (exponent % 2 == 1) {
                result = (result * base) % mod;
            }
            exponent = exponent >> 1;
            base = (base * base) % mod;
        }
        return result;
    }
    
    // Miller-Rabin测试的核心函数
    bool miller_test(long long d, long long n) {
        long long a = 2 + rand() % (n - 4); // 随机选择 2 <= a <= n-2
        long long x = mod_exp(a, d, n);
    
        if (x == 1 || x == n - 1) {
            return true;
        }
    
        while (d != n - 1) {
            x = (x * x) % n;
            d *= 2;
    
            if (x == 1) {
                return false;
            }
            if (x == n - 1) {
                return true;
            }
        }
        return false;
    }
    
    // Miller-Rabin 素性测试
    bool is_prime(long long n, int k) {
        if (n <= 1 || n == 4) {
            return false;
        }
        if (n <= 3) {
            return true;
        }
    
        // 将 n-1 表示为 2^s * d
        long long d = n - 1;
        while (d % 2 == 0) {
            d /= 2;
        }
    
        // 进行 k 次测试
        for (int i = 0; i < k; i++) {
            if (!miller_test(d, n)) {
                return false;
            }
        }
        return true;
    }
    
    int main() {
        srand(time(0)); // 初始化随机数生成器
    
        long long n;
        int k = 5; // 测试次数
        std::cout << "Enter a number to check if it is prime: ";
        std::cin >> n;
    
        if (is_prime(n, k)) {
            std::cout << n << " is a prime number." << std::endl;
        } else {
            std::cout << n << " is not a prime number." << std::endl;
        }
    
        return 0;
    }
    
    

    代码解析

    1. 快速幂算法mod_exp函数用于计算 (𝑏𝑎𝑠𝑒𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡)mod  𝑚𝑜𝑑(baseexponent)modmod,以高效地进行大数幂运算。
    2. Miller-Rabin测试的核心函数miller_test函数进行一次Miller-Rabin测试,通过随机选择基数 𝑎 并进行多次平方检验来判断 𝑛 是否可能是质数。
    3. 素性测试函数is_prime函数调用 miller_test 函数进行多次测试,以概率性的方式判断 𝑛n 是否为质数。

    Miller-Rabin算法的优点

    • 高效:对于大数,Miller-Rabin测试比许多其他算法更高效。
    • 可调性:通过增加测试次数 𝑘,可以降低误判率,使得算法在实际应用中非常可靠。
  • 相关阅读:
    讲讲如何用IDEA开发java项目——本文来自AI创作助手
    FPGA实现图像二值形态学滤波——腐蚀膨胀
    Springboot中slf4j日志的简单应用
    463. 岛屿的周长
    C++ std::find()实例讲解
    Llama 3.1论文中文对照翻译
    最高奖励5亿元,杭州出台政策,打造万亿级智能物联产业生态圈
    使用kubectl连接远程Kubernetes(k8s)集群
    呸 渣男!八股文不让看,非得让看并发编程全彩图册,这下又进厂了
    计算机毕业设计JAVA校园自行车租赁系统mybatis+源码+调试部署+系统+数据库+lw
  • 原文地址:https://www.cnblogs.com/qiyuewuyi/p/18218594