• 【昇腾开发全流程】MindSpore华为云模型训练


    前言

    学会如何安装配置华为云ModelArts、开发板Atlas 200I DK A2。
    并打通一个Ascend910训练到Ascend310推理的全流程思路。

    在本篇章,我们首先开始训练阶段!

    训练阶段

    A. 环境搭建

    MindSpore 华为云 模型训练

    Step1 创建OBS并行文件

    1. 登录华为云 -> 控制台 -> 左侧导航栏选择“对象存储服务 OBS” ->
      在左侧导航栏选择“桶列表” -> 单击右上角“创建桶”
      如下图所示:
    2. 在左侧列表中的“并行文件系统” -> 单击右上角“创建并行文件系统”。
      如下图所示:

      进行以下配置:
      image

      主要参数信息如下,其余配置请保持默认配置
      区域:选择“华北-北京四
      文件系统名称:自定义,本例使用modelarts0009
      (请使用modelarts作为文件系统前缀,注意名称为全局唯一)
      数据冗余存储策略:选择“单AZ存储
      策略:选择“私有

    Step2 上传数据文件至OBS并行文件系统

    1. 点击已创建的并行文件系统 -> 点击“新建文件夹”
      输入文件夹的名称,这里命名为input
      image
    2. 进入该文件夹中 -> 点击“上传文件”:
      将准备好的项目工程文件压缩包上传至该OBS中。

    Step3 基于ModelArts创建Notebook编程环境

    1. 在“全局配置”页面查看是否已经配置授权,允许ModelArts访问OBS:
      登录华为云 -> 控制台 -> 左侧导航栏选择“ModelArts” -> 在左侧导航栏选择“全局配置” -> 单击“添加授权”
      首次使用ModelArts:直接选择“新增委托”中的“普通用户”权限

    2. 登录华为云 -> 控制台 -> 左侧导航栏选择“ModelArts” -> 在左侧导航栏选择“开发环境”-> “Notebook” -> 点击“创建”
      进行以下配置:

      主要参数信息如下,其余配置请保持默认配置
      名称:自定义,本例使用notebook-test
      自动停止:自行选择,本例选择4小时
      镜像:选择“公共镜像”,并选择“mindspore_1.10.0-cann_6.0.1-py_3.7-euler_2.8.3
      资源类型:选择“公共资源池”
      磁盘规格:使用50GB

    Step4 为Notebook编程环境添加训练阶段项目工程文件

    1. 点击已创建的Notebook -> “存储配置” -> “添加数据存储”
      进行以下配置:
      image

      本地挂载目录:自定义创建本地挂载目录,本例使用/data/input
      存储位置:选择所创建的并行文件系统(本例选择已创建的moderarts0009),以及数据集所在的目录input

    2. 返回Notebook界面 -> 点击“打开”notebook-test ->
      打开“Terminal”命令行终端界面 ->
      执行以下命令,创建用于测试的test文件
      touch /data/input/test
      再执行以下命令,可以看到你刚创建的test文件&先前上传的文件
      ls /data/input

    3. 上传
      这里选择OBS文件上传
      因为这里本地上传限制为100M文件。

    4. 解压
      打开“Terminal”命令行终端界面 ->
      执行以下命令,查看是否在正确的路径下
      pwd
      ls -l
      执行以下命令,解压项目工程文件压缩包
      (这里以工业质检Unet为例,具体代码可参考文末学习资源推荐
      unzip unet.zip
      unzip unet_sdk.zip

    • 训练阶段工程目录结构如下:
      ├──unet
      	├──data                            // 预处理后的数据集文件夹
      	├──raw_data                        // 原始数据集
          ├──out_model                       // 模型导出保存文件夹
          ├──pred_visualization              // 可视化图片保存文件夹(需要自己创建)
          ├──src                             // 功能函数
          │   ├──unet_medical                   // U-Net网络
          │   ├──unet_nested                    // U-Net++网络
          │   ├──config.py                      // 配置文件
          │   ├──data_loader.py                 // 数据加载
          │   ├──eval_callback.py               // 训练时评估回调
          │   ├──loss.py                        // 损失函数
          │   ├──utils.py                       // 工具类函数
          ├──draw_result_folder.py           // 文件夹图片可视化
          ├──draw_result_single.py           // 单张图片可视化
          ├──eval.py                         // 模型验证
          ├──export.py                       // 模型导出,ckpt转air/mindir/onnx
          ├──postprocess.py                  // 后处理
          ├──preprocess.py                   // 前处理
          ├──preprocess_dataset.py           // 数据集预处理
          ├──train.py                        // 模型训练
          ├──requirements.txt
      
    • 模型转换工程目录结构如下:
      ├── unet_sdk
          ├── model
          │   ├──air2om.sh                     // air模型转om脚本
          │   ├──xxx.air                       //训练阶段导出的air模型
          │   ├──aipp_unet_simple_opencv.cfg   // aipp文件
      

    注:
    接下来就可以开始旅程,进入训练阶段。

    若中途暂停实验,记得做停止资源操作,消耗最少费用;
    若返回继续实验,再次启动Notebook编程环境;
    若完成了本实验,最后是释放资源操作,为了停止计费。

    一. 配置文件参数和数据预处理

    MindSpore 数据集预处理preprocess_dataset.py文件需调用如下脚本:

    文件参数脚本src/config.py文件。
    

    文件参数脚本为src/config.py,包括
    unet_medical,
    unet_nested,
    unet_nested_cell,
    unet_simple,
    unet_simple_coco
    共5种配置,表示模型与数据集之间的组合。
    包含超参数、数据集路径等文件参数

    Step 运行脚本

    1. 新建NoteBook中:查看是否在工程目录unet/路径下
      !pwd

    2. 进入NoteBook中:运行示例
      !python3 preprocess_dataset.py --data_url=./data/
      其中--data_url:数据集预处理后的保存路径。

    • 预计数据集预处理所需时间约为10分钟。
      预处理完的数据集会保存在/unet/data/文件夹下。
      输出结果:

    二. 模型训练

    MindSpore模型训练 需调用如下脚本:

    preprocess_dataset.py:将类coco数据集 转化成 模型训练需要数据格式。
    src/unet_xxx/:存放 unet/unet++ 模型结构。
    src/data_loader.py:存放 数据加载功能函数。
    src/eval_callback:存放 cb 函数,用于训练过程中进行eval.
    src/utils.py: mindspore 自定义 cb 函数,自定义 metrics 函数。
    train.py
    

    Step 运行脚本

    1. 进入NoteBook中:运行示例
      !python train.py --data_url=./data/ --run_eval=True
      其中--data_url: 数据集输入路径。
      其中--run_eval: True 表示训练过程中同时进行验证。
    • 预计模型训练所需时间约为36分钟。
      输出结果:

    三. 模型推理

    MindSpore模型推理 需调用如下脚本:

    src/unet_xxx/:存放unet/unet++模型结构。
    src/data_loader.py:存放数据预处理,数据加载功能函数。
    src/utils.py:mindspore自定义cb函数,自定义metrics函数。
    eval.py
    

    Step 运行脚本

    1. 进入NoteBook中:运行示例
      !python eval.py --data_url=./data/ --ckpt_path=./ckpt_0/best.ckpt
      其中--data_url:数据集输入路径。
      其中--ckpt_path:ckpt 读取路径
    • 预计模型推理所需时间约为2分钟。
      输出结果:


      注:
      IOU(Intersection over Union)是一个度量函数,
      用来描述两个物体边界框的重叠程度(取值范围为[0,1]),
      重叠的区域越大,IOU值就越大。

    四. 结果可视化

    可以通过画图的方式将图像的结果可视化,方便查看。
    可视化方法有两种。

    方法一 单张图片可视化

    draw_result_single.py:单张图片可视化
    输出单张图片的裁剪画图结果crop_plot.png和模型预测的结果predict_plot.png。

    Step 运行脚本

    1. 查看工程目录unet/路径下
      确保已经事先创建好
      可视化图片保存文件pred_visualization文件夹

    2. 进入NoteBook中:运行示例
      !python draw_result_single.py --data_url=./data/SW1hZ2VfMjAyMTA3MjcxNTEzMzYzNzk --save_url=./pred_visualization --ckpt_path=./ckpt_0/best.ckpt
      其中--data_url:数据集输入路径(到单张图像)。
      其中--save_url:输出图像保存路径。
      其中--ckpt_path:ckpt读取路径。

    • 单张图片可视化所需时间约为1分钟。
      可视化完的图片会保存在/unet/pred_visualization文件夹下。
      输出结果:


    方法二 文件夹图片可视化

    draw_result_folder.py:文件夹图片可视化
    输出文件夹内图片的模型预测结果predict.png。

    Step 运行脚本

    1. 查看工程目录unet/路径下
      确保已经事先创建好
      可视化图片保存文件pred_visualization文件夹

    2. 进入NoteBook中:运行示例
      !python draw_result_folder.py --data_url=./data/ --save_url=./pred_visualization --ckpt_path=./ckpt_0/best.ckpt
      其中--data_url:数据集输入路径(到图像文件夹)。
      其中--save_url:输出图像保存路径。
      其中--ckpt_path:ckpt读取路径。

    • 文件夹图片可视化所需时间约为10分钟。
      可视化完的图片会保存在/unet/pred_visualization文件夹下。
      输出结果:

    五. 模型保存

    如果想在昇腾AI处理器上执行推理,
    可以通过网络定义和CheckPoint生成AIR格式模型文件。

    Step 运行脚本

    1. 进入NoteBook中:运行示例
      !python export.py --ckpt_file="./ckpt_0/best.ckpt" --width=960 --height=960 --file_name="out_model/unet_hw960_bs1" --file_format="AIR"
      其中–-ckpt_file: ckpt路径。
      其中--width: 模型输入尺寸。
      其中--height: 模型输入尺寸。
      其中--file_name: 输出文件名。
      其中--file_format: 输出格式,必须为[“ONNX”, “AIR”, “MINDIR”]。
    • 模型保存即导出模型的输出结果在out_model/unet_hw960_bs1.air
      最后将导出的模型下载至本地,供后续推理阶段实验使用:
      右键 -> Download

    六. 模型转换

    此处模型转换需要用到ATC工具。
    详细内容&错误码请参考昇腾官网文档-使用ATC工具转换模型

    Step1 上传air模型

    • 将训练阶段实验模型保存的air模型上传至华为云ModelArts的unet_sdk/model/目录下

      这里因为模型中有optype[ArgMaxD],因此需要在Ascend910系列芯片上执行模型转换才能成功。
      (此次华为云ModelArts使用的正是Ascend910A)
      而一般情况,模型训练完进行的模型转换是可以选择在开发者套件(Ascend310系列芯片)和Ubuntu系统中执行的。
      (具体方法请参考昇腾官网文档-转换模型

    Step2 模型转换命令

    • 打开unet_sdk/model/air2om.sh文件
      使用atc命令如下,可根据实际开发情况进行修改。

      atc --framework=1 --model=unet_hw960_bs1.air --output=unet_hw960_bs1 --input_format=NCHW --soc_version=Ascend910A --log=error --insert_op_conf=aipp_unet_simple_opencv.cfg
      

      本实验将训练阶段实验模型保存air模型转为昇腾Al处理器支持的om格式离线模型
      注意:air 模型转 om 只支持静态 batch,这里 batchsize=1。
      其中--framework:原始框架类型。
      其中--model:原始模型文件路径与文件名。
      其中--output:转换后的离线模型的路径以及文件名。
      其中--input_format:输入数据格式。
      其中--soc_version:模型转换时指定芯片版本。
      这句话指的是当前执行模型转换时候所在机器的芯片版本,可通过命令行终端输入npu-smi info查看)

      其中--log:显示日志的级别。
      其中--insert_op_conf:插入算子的配置文件路径与文件名,这里使用AIPP预处理配置文件,用于图像数据预处理。

    Step3 运行脚本

    1. 确保在工程目录unet_sdk/model/路径下,首先查看文件权限
      ls -l
      (如果文件权限列中没有x,你才需要继续下一命令赋予它执行权限)
      输入
      chmod +x air2om.sh

    2. 运行示例
      输入
      ./air2om.sh

    • 输出结果:

    注:
    到此我们在华为云上使用MindSpore的训练阶段实验就结束了。
    有了导出的air模型及其模型转换出的om模型,我们就可以继续进入下一篇章:AscendCL推理阶段

    结束后记得及时关闭云上环境,避免资源浪费和产生额外的费用!!!

    学习资源推荐

  • 相关阅读:
    关于ElementUI之动态树+数据表格+分页实例
    雷电模拟器在打开“指针位置“后,无效,没有指针xy轴坐标显示?(解决方法)
    【Redis在Windows中与Linux中的下载安装,启动服务和设置密码远程连接】
    Vector和ArrayList的扩容
    基于uniapp与uview做一个按拼音首字母排序的通讯录页面
    前微软CEO的“离别礼物“:Cortana差点改名为“Bingo”
    工厂方法模式 创建型模式之四
    Android平台轻量级RTSP服务模块如何实现一个服务发布多路RTSP流?
    Maven3.9.1安装及环境变量配置
    移动端touch拖动事件和click事件冲突问题解决
  • 原文地址:https://www.cnblogs.com/Sullivan-Hua/p/18213097