在机器学习中,支持向量机(Support Vector Machine,SVM)算法既可以用于回归问题(SVR),也可以用于分类问题(SVC)
支持向量机是一种经典的监督学习算法,通常用于分类问题。SVM(分类)在机器学习知识结构中的位置如下:
SVM的核心思想是将分类问题转化为寻找分类超平面的问题,并通过最大化分类边界点(支持向量)到分类平面的距离(间隔)来实现分类
如图所示,左图展示了三种可能的线性分类器的决策边界,虚线所代表的模型表现非常糟糕,甚至都无法正确实现分类;其余两个模型在训练集上表现堪称完美,但是它们的决策边界与实例过于接近,导致在面对新样本时,表现可能不会太好
右图中的实线代表SVM分类器的决策边界,两虚线表示最大间隔超平面,虚线之间的距离(两个异类支持向量到超平面的距离之和)称为超平面最大间隔,简称间隔;SVM的决策边界不仅分离了两个类别,而且尽可能的远离了最近的训练实例,距离决策边界最近的实例称为支持向量
SVM的最优化问题就是要找到各类样本点到超平面的距离最远,也就是找到最大间隔超平面。任意超平面的方程为
ω T x + b = 0 \omega^Tx+b=0 ωTx+b=0
其中 ω \omega ω为超平面的法向量,决定了超平面的方向; b b b为位移项,决定了超平面到原点间的距离
二维空间点 ( x , y ) (x,y) (x,y)到直线 A x + B y + C = 0 Ax+By+C=0 Ax+By+C=0的距离公式为
d = ∣ A x + B y + C ∣ A 2 + B 2 d=\frac{|Ax+By+C|}{\sqrt{A^2+B^2}} d=A2+B2∣Ax+By+C∣
扩展到N维空间中,点 ( x 1 , x 2 , . . . x n ) (x_1,x_2,...x_n) (x1,x2,...xn)到直线 ω T x + b = 0 \omega^Tx+b=0 ωTx+b=0的距离为
d = ∣ ω T x + b ∣ ∣ ∣ ω ∣ ∣ d=\frac{|\omega^Tx+b|}{||\omega||} d=∣∣ω∣∣∣