• 力扣146. LRU 缓存


    Problem: 146. LRU 缓存

    题目描述

    在这里插入图片描述在这里插入图片描述

    思路

    主要说明大致思路,具体实现看代码。

    1.为了实现题目中的O(1)时间复杂度的get与put方法,我们利用哈希表和双链表的结合,将key作为键,对应的链表的节点作为值(也就是在此处我们用一个节点类作为值);
    2.定义双链表的节点类,其中包含每次put的键与对应的值,还包括前驱、后驱指针;
    3.编写双链表的实现类,并实现:

    3.1.初始化一个双链表(创建虚拟头、尾节点;由于我们要实现将最就不使用的节点删除,我们在此使用尾插法即每次链表尾部位最近使用的,表头为最久不适用的);
    3.2.实现尾插一个节点;
    3.3.实现删除一个给定的节点;
    3.4.实现从表头删除一个节点(删除最久不使用的节点)
    3.5.返回链表的长度

    4.实现LRUCache类:

    4.1. 创建哈希表map与双链表cache;
    4.2. 为了不直接在get与put中对map与cache操作带来麻烦(主要操作是同步在mao中添加key同时在cache中增、删、改对应节点的值),我们封装实现一些API(具体操作实现看代码)
    4.3. 实现get与put方法(直接看代码)

    复杂度

    时间复杂度:

    O ( n ) O(n) O(n);其中 n n n为要操作的次数

    空间复杂度:

    O ( n ) O(n) O(n)

    Code

    /**
     * Node class
     */
    class Node {
        public int key;
        public int val;
        public Node next;
        public Node prev;
    
        public Node(int k, int v) {
            this.key = k;
            this.val = v;
        }
    }
    
    class DoubleList {
        //The dummy node of head and tail to a double linked list
        private Node head;
        private Node tail;
        //The size of a linked list
        private int size;
    
        public DoubleList() {
            //Initialize the element of double linked list
            head = new Node(0, 0);
            tail = new Node(0, 0);
            head.next = tail;
            tail.prev = head;
            size = 0;
        }
    
        // Add node x at the end of the list, time O(1)
        // Tail insertion method of bidirectional linked list
        // with virtual head and tail nodes
        public void addLast(Node x) {
            x.prev = tail.prev;
            x.next = tail;
            tail.prev.next = x;
            tail.prev = x;
            size++;
        }
    
        // Delete the x node in the linked list (x must exist)
        // Since it is a double-linked list and given to the target Node,
        // time O(1)
        public void remove(Node x) {
            x.prev.next = x.next;
            x.next.prev = x.prev;
            size--;
        }
    
        // Delete the first node in the linked list
        // and return the node, time O(1)
        public Node removeFirst() {
            if (head.next == null) {
                return null;
            }
            Node first = head.next;
            remove(first);
            return first;
        }
    
        // Return list length, time O(1)
        public int size() {
            return size;
        }
    }
    
    class LRUCache {
        private HashMap<Integer, Node> map;
        private DoubleList cache;
        //Max capacity
        private int cap;
    
        public LRUCache(int capacity) {
            this.cap = capacity;
            map = new HashMap<>();
            cache = new DoubleList();
        }
    
        // Upgrade a key to the most recently used
        private void makeRecently(int key) {
            Node x = map.get(key);
            // Delete this node from the linked list first
            cache.remove(x);
            // Move back to the end of the line
            cache.addLast(x);
        }
    
        // Add the most recently used element
        private void addRecently(int key, int val) {
            Node x = new Node(key, val);
            // The end of the list is the most recently used element
            cache.addLast(x);
            // Add the mapping of the key to the map
            map.put(key, x);
        }
    
        // Delete a key
        private void deleteKey(int key) {
            Node x = map.get(key);
            // Delete from the linked list
            cache.remove(x);
            // Delete from map
            map.remove(key);
        }
    
        // Delete the element that has been unused the longest
        private void removeLeastRecently() {
            // The first element at the head of the list is the one
            // that has been unused for the longest time
            Node deletedNode = cache.removeFirst();
            // Delete its key from the map
            int deleteKey = deletedNode.key;
            map.remove(deleteKey);
        }
    
        public int get(int key) {
            if (!map.containsKey(key)) {
                return -1;
            }
            // Upgrade the data to the most recently used
            makeRecently(key);
            return map.get(key).val;
        }
    
        public void put(int key, int value) {
            if (map.containsKey(key)) {
                // Delete old data
                deleteKey(key);
                // The newly inserted data is the latest data
                addRecently(key, value);
                return;
            }
            if (cap == cache.size()) {
                // Delete the element that has been unused the longest
                removeLeastRecently();
            }
            // Add as recently used element
            addRecently(key, value);
        }
    }
    
    /**
     * Your LRUCache object will be instantiated and called as such:
     * LRUCache obj = new LRUCache(capacity);
     * int param_1 = obj.get(key);
     * obj.put(key,value);
     */
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
  • 相关阅读:
    mysql服务器无法启动问题处理
    图像融合--挑战、机遇与对策
    42. 泛型编程和模板(类模板)
    SpringBoot 整合 MongoDB 实战解说
    MongoDB聚合运算符:$setEquals
    Java内存模型中的三大特性
    11位顶级专家共同预测2023年量子领域发展趋势
    JVM-JAVA-类加载过程
    2023年第四届MathorCup高校数学建模挑战赛——大数据竞赛A题
    【CSS】笔记1-基础选择器、样式引入
  • 原文地址:https://blog.csdn.net/LNsupermali/article/details/138097434