导入ubuntu20.04镜像
sudo docker load -i ubuntu.tar
在home/nvidia下新建文件夹
mkdir share_opt
sudo docker run -id --name=Apollo --net=host --runtime nvidia -e DISPLAY=$DISPLAY -v /tmp/.X11-unix/:/tmp/.X11-unix -v /home/nvidia/share_opt:/share_opt -v /tmp/argus_socket:/tmp/argus_socket --device=/dev/video0 --device=/dev/video2 --device=/dev/video4 --device=/dev/video6 --privileged=true ubuntu:20.04_new
报错:
docker: Error response from daemon: unknown or invalid runtime name: nvidia.
和
- distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
- curl -s -L https://nvidia.github.io/nvidia-container-runtime/$distribution/nvidia-container-runtime.list | sudo tee /etc/apt/sources.list.d/nvidia-container-runtime.list
- sudo apt-get update
sudo apt-get install nvidia-container-runtime
报错:
nvidia-container-toolkit : Depends: nvidia-container-toolkit-base (= 1.13.5-1) but it is not going to be installed
sudo apt --fix-broken install
选D: *** daemon.json (Y/I/N/O/D/Z) [default=N] ? D
sudo apt-get install nvidia-container-runtime
nvidia-container-runtime 已经从3.9.0-1 升级成了3.13.0-1
暂时跳过 --runtime nvidia ,GPU加速,建立容器
sudo docker run -id --name=Apollo --net=host -e DISPLAY=$DISPLAY -v /tmp/.X11-unix/:/tmp/.X11-unix -v /home/nvidia/share_opt:/share_opt -v /tmp/argus_socket:/tmp/argus_socket --device=/dev/video0 --device=/dev/video2 --device=/dev/video4 --device=/dev/video6 --privileged=true ubuntu:20.04_new
sudo apt-get update
sudo apt-get upgrade
sudo apt install software-properties-common
- sudo apt-get update
- sudo apt-add-repository multiverse
- sudo apt-get update
- sudo apt-get install nvidia-driver-455
export CUDA_HOME=/usr/local/cuda-11.4
export LD_LIBRARY_PATH=$CUDA_HOME/lib64:$LD_LIBRARY_PATH
export PATH=$CUDA_HOME/bin:$PATH
export CPATH=$CUDA_HOME/include:$CPATH
在into.sh中配置挂载目录
-v /usr/local/cuda-11.4:/usr/local/cuda \
安装 NVIDIA 容器工具包:
nvidia-container-runtime
。- distribution=$(. /etc/os-release; echo $ID$VERSION_ID)
-
- curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
-
- curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list
-
- sudo apt-get update
-
- sudo apt-get install -y nvidia-container-toolkit
配置 Docker 以使用 NVIDIA 容器运行时:
nvidia-container-runtime
。通常,安装过程中会自动完成配置。您可以通过检查 /etc/docker/daemon.json
文件确认是否已正确配置。配置应类似如下:- {
- "runtimes": {
- "nvidia": {
- "path": "/usr/bin/nvidia-container-runtime",
- "runtimeArgs": []
- }
- }
- }
sudo systemctl restart docker
现在可以使用docker run --runtime=nvidia -it your_gpu_image
docker run -it --env PATH="/usr/local/cuda-11.4/bin:$PATH" your_image_name bash
export PATH="/usr/local/cuda-11.4/bin:$PATH"
挂载权限?
ls -ld /usr/local/cuda-11.4
查看GPU版本
cat /proc/driver/nvidia/version
sudo docker run --runtime=nvidia -v /usr/local/cuda-11.4:/usr/local/cuda-11.4 -it --name=apollo5 apollo_docker:4.19