• 【无标题】


    导入ubuntu20.04镜像

    sudo docker load -i ubuntu.tar

     在home/nvidia下新建文件夹

    mkdir share_opt

     

    sudo docker run -id --name=Apollo --net=host --runtime nvidia -e DISPLAY=$DISPLAY -v /tmp/.X11-unix/:/tmp/.X11-unix -v /home/nvidia/share_opt:/share_opt -v /tmp/argus_socket:/tmp/argus_socket --device=/dev/video0 --device=/dev/video2 --device=/dev/video4 --device=/dev/video6 --privileged=true ubuntu:20.04_new

    报错:

    docker: Error response from daemon: unknown or invalid runtime name: nvidia.

    1. distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
    2. curl -s -L https://nvidia.github.io/nvidia-container-runtime/$distribution/nvidia-container-runtime.list | sudo tee /etc/apt/sources.list.d/nvidia-container-runtime.list
    3. sudo apt-get update
    sudo apt-get install nvidia-container-runtime
    

    报错:

     nvidia-container-toolkit : Depends: nvidia-container-toolkit-base (= 1.13.5-1) but it is not going to be installed

    sudo apt --fix-broken install
    

    选D: *** daemon.json (Y/I/N/O/D/Z) [default=N] ? D

    sudo apt-get install nvidia-container-runtime
    

     nvidia-container-runtime 已经从3.9.0-1 升级成了3.13.0-1


    暂时跳过 --runtime nvidia ,GPU加速,建立容器

    sudo docker run -id --name=Apollo --net=host -e DISPLAY=$DISPLAY -v /tmp/.X11-unix/:/tmp/.X11-unix -v /home/nvidia/share_opt:/share_opt -v /tmp/argus_socket:/tmp/argus_socket --device=/dev/video0 --device=/dev/video2 --device=/dev/video4 --device=/dev/video6 --privileged=true ubuntu:20.04_new

    sudo apt-get update

    sudo apt-get upgrade

    sudo apt install software-properties-common

    1. sudo apt-get update
    2. sudo apt-add-repository multiverse
    3. sudo apt-get update
    4. sudo apt-get install nvidia-driver-455

     

    export CUDA_HOME=/usr/local/cuda-11.4
    export LD_LIBRARY_PATH=$CUDA_HOME/lib64:$LD_LIBRARY_PATH
    export PATH=$CUDA_HOME/bin:$PATH
    export CPATH=$CUDA_HOME/include:$CPATH


    在into.sh中配置挂载目录

    -v /usr/local/cuda-11.4:/usr/local/cuda \


     

    1. 安装 NVIDIA 容器工具包:

      • 确保已经安装了 NVIDIA 容器工具包(NVIDIA Container Toolkit),它是 Docker 与 NVIDIA GPU 驱动之间的重要桥梁,提供了 nvidia-container-runtime
    1. distribution=$(. /etc/os-release; echo $ID$VERSION_ID)
    2. curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
    3. curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list
    4. sudo apt-get update
    5. sudo apt-get install -y nvidia-container-toolkit
    1. 配置 Docker 以使用 NVIDIA 容器运行时:

      • 安装 NVIDIA 容器工具包后,需要配置 Docker 以使用 nvidia-container-runtime。通常,安装过程中会自动完成配置。您可以通过检查 /etc/docker/daemon.json 文件确认是否已正确配置。配置应类似如下:
    1. {
    2. "runtimes": {
    3. "nvidia": {
    4. "path": "/usr/bin/nvidia-container-runtime",
    5. "runtimeArgs": []
    6. }
    7. }
    8. }
         sudo systemctl restart docker

    现在可以使用docker run --runtime=nvidia -it your_gpu_image


    docker run -it --env PATH="/usr/local/cuda-11.4/bin:$PATH" your_image_name bash

    export PATH="/usr/local/cuda-11.4/bin:$PATH"

    挂载权限?

    ls -ld /usr/local/cuda-11.4


    查看GPU版本

    cat /proc/driver/nvidia/version

     sudo docker run --runtime=nvidia -v /usr/local/cuda-11.4:/usr/local/cuda-11.4 -it --name=apollo5 apollo_docker:4.19

  • 相关阅读:
    GPIO输入输出模式分析(详解)
    Windows系统Bat命令批量重命名文件
    《2022年中国银行业RPA供应商实力矩阵分析》研究报告正式启动
    Linux开机自动挂载
    Element-Ui入门教学——<el-upload>限制上传文件类型
    每天学习2小时——黑客(网络安全)技术
    python文件操作、文件操作、读写文件、写模式
    机器人制作开源方案 | 莲花灯
    Docker 中下载各版本的 CentOS、CentOS Steam 方式
    【Android高级UI】PorterDuffMode颜色混合公式
  • 原文地址:https://blog.csdn.net/m0_74633496/article/details/138153161