👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆下载资源链接👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆
《《《《《《《《更多资源还请持续关注本专栏》》》》》》》
论文与完整源程序_电网论文源程序的博客-CSDN博客
https://blog.csdn.net/liang674027206/category_12531414.html
参考文献: A Two-layer Energy Management SystemforMicrogrids with Hybrid Energy Storage considering Degradation Costs 主要内容:一个微网双层优化调度模型,微网聚合单元包括风电、光伏、储能以及超级电容器,在微网的运行成本层面考虑了电池的退化成本,对其全寿命周期进行建模,并转换为实时相关的短期成本,采用双层调度模型,上层为EMS系统最小化总运行成本,下层为EMS消除预测误差引起的波动最小

部分代码展示:
- function mpcModel = fcnSetStageParam( imput )
- % iteration: Total hours to be considered;
- % horizon: prediction horizon;
- %snd_from_fst: data needed from the first layer;
- %% Do not modify this part
- tol_opt = 1e-8;
- opt_option = 1;
- iprint = 5;
- [tol_opt, opt_option, iprint, printClosedloopDataFunc]...
- = fcnChooseAlgorithm(tol_opt, opt_option, iprint, @printClosedloopData);
- %Do not modify this part END
-
- if strcmp( imput , 'fst')
- % MPC Parameters
- mpcModel.name = 'fst';
- mpcModel.iter = 24*2; %7days: 168
- mpcModel.horizon = 48; %48 as default
- % Variable Inicitialization
- mpcModel.u0 = repmat( [4.99999;0.00001], 1, mpcModel.horizon ); %2 initial control variables
- mpcModel.xmeasure = [0.000, 50]; %2 initial state
- % Optimization Alrogithm
- mpcModel.option = fcnChooseOption(opt_option, tol_opt, mpcModel.u0);
- % Funcitions
- mpcModel.costfunction = @costfunction ;
- mpcModel.nonlinearconstraints = @nonlinearconstraints ;
- mpcModel.runningcosts = @runningcosts;
- mpcModel.terminalcosts = @terminalcosts;
- mpcModel.nl_constraints = @nl_constraints;
- mpcModel.nl_terminalconstraints = @nl_terminalconstraints;
- mpcModel.l_constraints = @l_constraints;
- mpcModel.system_model = @system_model;
- %System Models:
- mpcModel.battery = batteryModel();
- %Recording Parameters:
- mpcModel.u = [];
- mpcModel.x = [];
- mpcModel.f = [];
- % Print Settings
- mpcModel.iprint = iprint;
- mpcModel.printClosedloopData = printClosedloopDataFunc;
-
- elseif strcmp( imput , 'snd')
- % MPC Parameters
- mpcModel.name = 'snd';
- mpcModel.from_fst = 2; %2
- mpcModel.iter = 12; %12
- mpcModel.horizon = 12; %12
- % Funcitions
- mpcModel.costfunction = @snd_costfunction;
- mpcModel.nonlinearconstraints = @snd_nonlinearconstraints;
- mpcModel.runningcosts = @snd_runningcosts;
- mpcModel.terminalcosts = @snd_terminalcosts;
- mpcModel.nl_constraints = @snd_nl_constraints;
- mpcModel.nl_terminalconstraints = @snd_nl_terminalconstraints;
- mpcModel.l_constraints = @snd_l_constraints;
- mpcModel.system_model = @snd_system_model;
- % System Models
- mpcModel.battery = batteryModel();
- %Recording Parameters:
- mpcModel.x = [];
- mpcModel.u = [];
-
- % Print Settings
- mpcModel.iprint = iprint;
- mpcModel.printClosedloopData = printClosedloopDataFunc;
-
- mpcModel.flag = 0;
- else
- error('Parameter setting is wrong. Please check your input');
- end
- end
效果展示:


83号资源-源程序:论文可在知网下载《考虑储能优化的微网能量管理双层模型》本人博客有解读资源-CSDN文库
https://download.csdn.net/download/LIANG674027206/89148116👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆下载资源链接👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆👆
《《《《《《《《更多资源还请持续关注本专栏》》》》》》》
论文与完整源程序_电网论文源程序的博客-CSDN博客
https://blog.csdn.net/liang674027206/category_12531414.html