• 猎聘爬虫(附源码)


    废话不多说直接附源码

    cookies需要替换成自己的 , 该网站在不登录的情况下只能请求到10页数据 , 想要获得完整数据需要携带登录后的cookies

    import requests
    import json
    from lxml import etree
    import os
    import openpyxl
    
    
    
    
    headers = {
        "Accept": "application/json, text/plain, */*",
        "Accept-Language": "zh-CN,zh;q=0.9,en;q=0.8,en-GB;q=0.7,en-US;q=0.6",
        "Cache-Control": "no-cache",
        "Connection": "keep-alive",
        "Content-Type": "application/json;charset=UTF-8",
        "Origin": "https://www.liepin.com",
        "Pragma": "no-cache",
        "Referer": "https://www.liepin.com/",
        "Sec-Fetch-Dest": "empty",
        "Sec-Fetch-Mode": "cors",
        "Sec-Fetch-Site": "same-site",
        "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/122.0.0.0 Safari/537.36 Edg/122.0.0.0",
        "X-Client-Type": "web",
        "X-Fscp-Bi-Stat": "{\"location\": \"https://www.liepin.com/zhaopin/?inputFrom=head_navigation&scene=init&workYearCode=0&ckId=jrkiappybgyczm7c2sk5zmfzwgpqpqia\"}",
        "X-Fscp-Fe-Version": "",
        "X-Fscp-Std-Info": "{\"client_id\": \"40108\"}",
        "X-Fscp-Trace-Id": "f22eb671-3c8f-4f94-8b14-e5e7d176be52",
        "X-Fscp-Version": "1.1",
        "X-Requested-With": "XMLHttpRequest",
        "X-XSRF-TOKEN": "hCnGTNiJQfe47qu4x2OChA",
        "sec-ch-ua": "\"Chromium\";v=\"122\", \"Not(A:Brand\";v=\"24\", \"Microsoft Edge\";v=\"122\"",
        "sec-ch-ua-mobile": "?0",
        "sec-ch-ua-platform": "\"Windows\""
    }
    
    
    def spiderData():
        # 循环每一页
        for i in range(1, 21):
            # 配置账号参数
            cookies =  ''
            # 网页链接
            url = "https://api-c.liepin.com/api/com.liepin.searchfront4c.pc-search-job"
            # 参数
            data = {
                "data": {
                    "mainSearchPcConditionForm": {
                        "city": "410",
                        "dq": "410",
                        "pubTime": "",
                        "currentPage": f"{i}",
                        "pageSize": 40,
                        "key": "",
                        "suggestTag": "",
                        "workYearCode": "0",
                        "compId": "",
                        "compName": "",
                        "compTag": "",
                        "industry": "H01$H01",
                        "salary": "",
                        "jobKind": 2,
                        "compScale": "",
                        "compKind": "",
                        "compStage": "",
                        "eduLevel": ""
                    },
                    "passThroughForm": {
                        "scene": "init",
                        "ckId": "0nbwaavz2gngc40f8xmfp59in6ymulua",
                        "skId": "pf8wezdo0ezilzl4tyd1g4tcoyh43qe9",
                        "fkId": "0nbwaavz2gngc40f8xmfp59in6ymulua",
                        "suggest": None
                    }
                }
            }
            data = json.dumps(data, separators=(',', ':'))
            response = requests.post(url, headers=headers, cookies=cookies, data=data).json()
    
            print(f"正在爬取第{i + 1}页")
            praseData(response)
    
    
    # 这段代码主要用于解析和保存来自招聘网站的职位信息。下面是加上注释后的代码:
    def praseData(data):
        for z in range(0,40):
            job_card_list = data.get('data', {}).get('data', {}).get('jobCardList', [])
            if 0 <= z < len(job_card_list):
                res_json_item = job_card_list[z]
    
                # 公司名称
                comp_name = res_json_item.get('comp', {}).get('compName')
    
                # 职位链接
                job_link = res_json_item.get('job', {}).get('link')
    
                # 工作地点
                place = res_json_item.get('job', {}).get('dq')
    
                # 薪资
                salary = res_json_item.get('job', {}).get('salary')
    
                # 职位名称
                job = res_json_item.get('job', {}).get('title')
            else:
                # 如果z不是有效索引或job_card_list为空,则处理错误或设置默认值
                comp_name = None
                job_link = None
                place = None
                salary = None
                job = None
    
    
                # 解析职位详情页面
            sub_data = requests.get(job_link, headers=headers).text
            # 使用 etree 解析 HTML 数据
            xml = etree.HTML(sub_data)
            # 尝试从详情页面中提取公司简介
            try:
                details = xml.xpath('//dl[@class="paragraph"]/dd/text()')[0]
            except:
                details = None
    
            # 公司简介
            companyProfile = xml.xpath("//div[@class='paragraph-box']/div/text()")
            company_profile = ','.join(companyProfile)
    
            # 公司信息
    
            try:
                intorduct = details.split('截止日期')[0].split()
                intorducts = ','.join(intorduct)
            except:
                intorducts = None
    
            # 保存到 excle 表格
            job_list = [job,place,salary,comp_name,company_profile,intorducts]
            print(job_list)
            save_data_to_xlsx(job_list)
    
    # 保存到excle表格
    def save_data_to_xlsx(data ):
    
        filename = f'job.xlsx'
        name_headers = ['职位', '地点', '薪资', '公司名称', '公司简介','描述']
        if os.path.exists(filename):
            workbook = openpyxl.load_workbook(filename)
            sheet = workbook.active
            sheet.append(data)
        else:
            workbook = openpyxl.Workbook()
            sheet = workbook.active
            # 添加表头
            sheet.append(name_headers)
            sheet.append(data)
        # 保存 Excel 文件
        workbook.save(filename)
    
    
    
    if __name__ == '__main__':
        spiderData()
    
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157
    • 158
    • 159
    • 160
    • 161
    • 162
    • 163
  • 相关阅读:
    bind服务编译安装及压力测试
    【深度学习 Pytorch笔记 B站刘二大人 线性模型 Linear-Model 数学原理分析以及源码实现(1/10)】
    STM32F4X OLED使用
    深度神经网络——什么是小样本学习?
    计算机网络第4章-IPv6和寻址
    day010--mysql中的分支函数
    【非真实渲染】【卡通渲染技术点介绍】
    如何安装Nacos服务器?
    CCF CSP 201403-2 窗口 题解
    嵌入式软件常用测试工具
  • 原文地址:https://blog.csdn.net/xiugtt6141121/article/details/138172104