🍨 本文为🔗365天深度学习训练营 中的学习记录博客
🍖 原作者:K同学啊
🏡 我的环境:
语言环境:Python3.8
编译器:Jupyter Lab
深度学习环境:Pytorch
torch==1.12.1+cu113
torchvision==0.13.1+cu113
如果设备上支持GPU就使用GPU,否则使用CPU
- import torch
- import torch.nn as nn
- import torchvision.transforms as transforms
- import torchvision
- from torchvision import transforms, datasets
- import os,PIL,pathlib,warnings
-
- warnings.filterwarnings("ignore") #忽略警告信息
-
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
- device
输出:
device(type='cuda')
- import os,PIL,random,pathlib
-
- data_dir = './6-data/'
- data_dir = pathlib.Path(data_dir)
-
- data_paths = list(data_dir.glob('*'))
- classeNames = [str(path).split("\\")[1] for path in data_paths]
- classeNames
输出:
- ['Angelina Jolie',
- 'Brad Pitt',
- 'Denzel Washington',
- 'Hugh Jackman',
- 'Jennifer Lawrence',
- 'Johnny Depp',
- 'Kate Winslet',
- 'Leonardo DiCaprio',
- 'Megan Fox',
- 'Natalie Portman',
- 'Nicole Kidman',
- 'Robert Downey Jr',
- 'Sandra Bullock',
- 'Scarlett Johansson',
- 'Tom Cruise',
- 'Tom Hanks',
- 'Will Smith']
输入:
- # 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
- train_transforms = transforms.Compose([
- transforms.Resize([224, 224]), # 将输入图片resize成统一尺寸
- # transforms.RandomHorizontalFlip(), # 随机水平翻转
- transforms.ToTensor(), # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
- transforms.Normalize( # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
- mean=[0.485, 0.456, 0.406],
- std=[0.229, 0.224, 0.225]) # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
- ])
-
- total_data = datasets.ImageFolder("./6-data/",transform=train_transforms)
- total_data
输出:
- Dataset ImageFolder
- Number of datapoints: 1800
- Root location: ./6-data/
- StandardTransform
- Transform: Compose(
- Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=None)
- ToTensor()
- Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
- )
输入:
total_data.class_to_idx
输出:
- {'Angelina Jolie': 0,
- 'Brad Pitt': 1,
- 'Denzel Washington': 2,
- 'Hugh Jackman': 3,
- 'Jennifer Lawrence': 4,
- 'Johnny Depp': 5,
- 'Kate Winslet': 6,
- 'Leonardo DiCaprio': 7,
- 'Megan Fox': 8,
- 'Natalie Portman': 9,
- 'Nicole Kidman': 10,
- 'Robert Downey Jr': 11,
- 'Sandra Bullock': 12,
- 'Scarlett Johansson': 13,
- 'Tom Cruise': 14,
- 'Tom Hanks': 15,
- 'Will Smith': 16}
- train_size = int(0.8 * len(total_data))
- test_size = len(total_data) - train_size
- train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
- train_dataset, test_dataset
输出:
- (
0x2570a8b6680>, -
0x2570a8b67a0>)
- batch_size = 32
-
- train_dl = torch.utils.data.DataLoader(train_dataset,
- batch_size=batch_size,
- shuffle=True,
- num_workers=1)
- test_dl = torch.utils.data.DataLoader(test_dataset,
- batch_size=batch_size,
- shuffle=True,
- num_workers=1)
- for X, y in test_dl:
- print("Shape of X [N, C, H, W]: ", X.shape)
- print("Shape of y: ", y.shape, y.dtype)
- break
输出:
- Shape of X [N, C, H, W]: torch.Size([32, 3, 224, 224])
- Shape of y: torch.Size([32]) torch.int64
VGG-16(Visual Geometry Group-16)是由牛津大学视觉几何组(Visual Geometry Group)提出的一种深度卷积神经网络架构,用于图像分类和对象识别任务。VGG-16在2014年被提出,是VGG系列中的一种。VGG-16之所以备受关注,是因为它在ImageNet图像识别竞赛中取得了很好的成绩,展示了其在大规模图像识别任务中的有效性。
以下是VGG-16的主要特点:
深度:VGG-16由16个卷积层和3个全连接层组成,因此具有相对较深的网络结构。这种深度有助于网络学习到更加抽象和复杂的特征。
卷积层的设计:VGG-16的卷积层全部采用3x3
的卷积核和步长为1的卷积操作,同时在卷积层之后都接有ReLU激活函数。这种设计的好处在于,通过堆叠多个较小的卷积核,可以提高网络的非线性建模能力,同时减少了参数数量,从而降低了过拟合的风险。
池化层:在卷积层之后,VGG-16使用最大池化层来减少特征图的空间尺寸,帮助提取更加显著的特征并减少计算量。
全连接层:VGG-16在卷积层之后接有3个全连接层,最后一个全连接层输出与类别数相对应的向量,用于进行分类。
VGG-16结构说明:
13个卷积层(Convolutional Layer),分别用blockX_convX
表示;
3个全连接层(Fully connected Layer),用classifier
表示;
5个池化层(Pool layer)。
VGG-16 包含了16个隐藏层(13个卷积层和3个全连接层),故称为 VGG-16
- from torchvision.models import vgg16
-
- device = "cuda" if torch.cuda.is_available() else "cpu"
- print("Using {} device".format(device))
-
- # 加载预训练模型,并且对模型进行微调
- model = vgg16(pretrained = True).to(device) # 加载预训练的vgg16模型
-
- for param in model.parameters():
- param.requires_grad = False # 冻结模型的参数,这样子在训练的时候只训练最后一层的参数
-
- # 修改classifier模块的第6层(即:(6): Linear(in_features=4096, out_features=2, bias=True))
- # 注意查看我们下方打印出来的模型
- model.classifier._modules['6'] = nn.Linear(4096,len(classeNames)) # 修改vgg16模型中最后一层全连接层,输出目标类别个数
- model.to(device)
- model
输出:
- Using cuda device
-
- VGG(
- (features): Sequential(
- (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- (1): ReLU(inplace=True)
- (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- (3): ReLU(inplace=True)
- (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
- (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- (6): ReLU(inplace=True)
- (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- (8): ReLU(inplace=True)
- (9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
- (10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- (11): ReLU(inplace=True)
- (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- (13): ReLU(inplace=True)
- (14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- (15): ReLU(inplace=True)
- (16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
- (17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- (18): ReLU(inplace=True)
- (19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- (20): ReLU(inplace=True)
- (21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- (22): ReLU(inplace=True)
- (23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
- (24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- (25): ReLU(inplace=True)
- (26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- (27): ReLU(inplace=True)
- (28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
- (29): ReLU(inplace=True)
- (30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
- )
- (avgpool): AdaptiveAvgPool2d(output_size=(7, 7))
- (classifier): Sequential(
- (0): Linear(in_features=25088, out_features=4096, bias=True)
- (1): ReLU(inplace=True)
- (2): Dropout(p=0.5, inplace=False)
- (3): Linear(in_features=4096, out_features=4096, bias=True)
- (4): ReLU(inplace=True)
- (5): Dropout(p=0.5, inplace=False)
- (6): Linear(in_features=4096, out_features=17, bias=True)
- )
- )
- # 训练循环
- def train(dataloader, model, loss_fn, optimizer):
- size = len(dataloader.dataset) # 训练集的大小
- num_batches = len(dataloader) # 批次数目, (size/batch_size,向上取整)
-
- train_loss, train_acc = 0, 0 # 初始化训练损失和正确率
-
- for X, y in dataloader: # 获取图片及其标签
- X, y = X.to(device), y.to(device)
-
- # 计算预测误差
- pred = model(X) # 网络输出
- loss = loss_fn(pred, y) # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
-
- # 反向传播
- optimizer.zero_grad() # grad属性归零
- loss.backward() # 反向传播
- optimizer.step() # 每一步自动更新
-
- # 记录acc与loss
- train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
- train_loss += loss.item()
-
- train_acc /= size
- train_loss /= num_batches
-
- return train_acc, train_loss
测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器
- def test (dataloader, model, loss_fn):
- size = len(dataloader.dataset) # 测试集的大小
- num_batches = len(dataloader) # 批次数目, (size/batch_size,向上取整)
- test_loss, test_acc = 0, 0
-
- # 当不进行训练时,停止梯度更新,节省计算内存消耗
- with torch.no_grad():
- for imgs, target in dataloader:
- imgs, target = imgs.to(device), target.to(device)
-
- # 计算loss
- target_pred = model(imgs)
- loss = loss_fn(target_pred, target)
-
- test_loss += loss.item()
- test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()
-
- test_acc /= size
- test_loss /= num_batches
-
- return test_acc, test_loss
- # def adjust_learning_rate(optimizer, epoch, start_lr):
- # # 每 2 个epoch衰减到原来的 0.98
- # lr = start_lr * (0.92 ** (epoch // 2))
- # for param_group in optimizer.param_groups:
- # param_group['lr'] = lr
-
- learn_rate = 1e-4 # 初始学习率
- # optimizer = torch.optim.SGD(model.parameters(), lr=learn_rate)
✨ 调用官方动态学习率接口✨
与上面方法是等价的
- # 调用官方动态学习率接口时使用
- lambda1 = lambda epoch: 0.92 ** (epoch // 4)
- optimizer = torch.optim.SGD(model.parameters(), lr=learn_rate)
- scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda1) #选定调整方法
👉 调用官方接口示例:👉
该代码块仅为代码讲解示例,不是整体程序的一部分
- # 代码讲解示例
- model = [torch.nn.Parameter(torch.randn(2, 2, requires_grad=True))]
- optimizer = SGD(model, 0.1)
- scheduler = ExponentialLR(optimizer, gamma=0.9)
-
- for epoch in range(20):
- for input, target in dataset:
- optimizer.zero_grad()
- output = model(input)
- loss = loss_fn(output, target)
- loss.backward()
- optimizer.step()
- scheduler.step()
更多的官方动态学习率设置方式可参考:torch.optim — PyTorch 2.2 documentation
model.train()
、model.eval()
训练营往期文章中有详细的介绍。请注意观察我是如何保存最佳模型,与TensorFlow2的保存方式有何异同。
- import copy
-
- loss_fn = nn.CrossEntropyLoss() # 创建损失函数
- epochs = 40
-
- train_loss = []
- train_acc = []
- test_loss = []
- test_acc = []
-
- best_acc = 0 # 设置一个最佳准确率,作为最佳模型的判别指标
-
- for epoch in range(epochs):
- # 更新学习率(使用自定义学习率时使用)
- # adjust_learning_rate(optimizer, epoch, learn_rate)
-
- model.train()
- epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
- scheduler.step() # 更新学习率(调用官方动态学习率接口时使用)
-
- model.eval()
- epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
-
- # 保存最佳模型到 best_model
- if epoch_test_acc > best_acc:
- best_acc = epoch_test_acc
- best_model = copy.deepcopy(model)
-
- train_acc.append(epoch_train_acc)
- train_loss.append(epoch_train_loss)
- test_acc.append(epoch_test_acc)
- test_loss.append(epoch_test_loss)
-
- # 获取当前的学习率
- lr = optimizer.state_dict()['param_groups'][0]['lr']
-
- template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
- print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss,
- epoch_test_acc*100, epoch_test_loss, lr))
-
- # 保存最佳模型到文件中
- PATH = './best_model.pth' # 保存的参数文件名
- torch.save(model.state_dict(), PATH)
-
- print('Done')
输出:
- Epoch: 1, Train_acc:6.2%, Train_loss:2.898, Test_acc:5.6%, Test_loss:2.845, Lr:1.00E-04
- Epoch: 2, Train_acc:6.8%, Train_loss:2.873, Test_acc:7.8%, Test_loss:2.811, Lr:1.00E-04
- Epoch: 3, Train_acc:8.1%, Train_loss:2.840, Test_acc:8.6%, Test_loss:2.811, Lr:1.00E-04
- ......
- Epoch:37, Train_acc:20.8%, Train_loss:2.455, Test_acc:16.9%, Test_loss:2.479, Lr:4.72E-05
- Epoch:38, Train_acc:18.1%, Train_loss:2.454, Test_acc:16.9%, Test_loss:2.471, Lr:4.72E-05
- Epoch:39, Train_acc:20.6%, Train_loss:2.461, Test_acc:16.9%, Test_loss:2.476, Lr:4.72E-05
- Epoch:40, Train_acc:20.3%, Train_loss:2.446, Test_acc:17.2%, Test_loss:2.458, Lr:4.34E-05
- Done
- import matplotlib.pyplot as plt
- #隐藏警告
- import warnings
- warnings.filterwarnings("ignore") #忽略警告信息
- plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
- plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
- plt.rcParams['figure.dpi'] = 100 #分辨率
-
- epochs_range = range(epochs)
-
- plt.figure(figsize=(12, 3))
- plt.subplot(1, 2, 1)
-
- plt.plot(epochs_range, train_acc, label='Training Accuracy')
- plt.plot(epochs_range, test_acc, label='Test Accuracy')
- plt.legend(loc='lower right')
- plt.title('Training and Validation Accuracy')
-
- plt.subplot(1, 2, 2)
- plt.plot(epochs_range, train_loss, label='Training Loss')
- plt.plot(epochs_range, test_loss, label='Test Loss')
- plt.legend(loc='upper right')
- plt.title('Training and Validation Loss')
- plt.show()
- from PIL import Image
-
- classes = list(total_data.class_to_idx)
-
- def predict_one_image(image_path, model, transform, classes):
-
- test_img = Image.open(image_path).convert('RGB')
- plt.imshow(test_img) # 展示预测的图片
-
- test_img = transform(test_img)
- img = test_img.to(device).unsqueeze(0)
-
- model.eval()
- output = model(img)
-
- _,pred = torch.max(output,1)
- pred_class = classes[pred]
- print(f'预测结果是:{pred_class}')
-
- # 预测训练集中的某张照片
- predict_one_image(image_path='./6-data/Angelina Jolie/001_fe3347c0.jpg',
- model=model,
- transform=train_transforms,
- classes=classes)
输出:
预测结果是:Angelina Jolie
- best_model.eval()
- epoch_test_acc, epoch_test_loss = test(test_dl, best_model, loss_fn)
- epoch_test_acc, epoch_test_loss
输出:
(0.17222222222222222, 2.457642674446106)
- # 查看是否与我们记录的最高准确率一致
- epoch_test_acc
输出:
0.17222222222222222
巩固了训练基本流程,了解了人脸识别基本原理