主要原因是Zookeeper集群和Zookeeper client判断超时并不能做到完全同步,也就是说可能一前一后,如果是集群先于client发现,那就会出现上面的情况。同时,在发现并切换后通知各个客户端也有先后快慢。一般出现这种情况的几率很小,需要leader节点与Zookeeper集群网络断开,但是与其他集群角色之间的网络没有问题,还要满足上面那些情况,但是一旦出现就会引起很严重的后果,数据不一致。
要解决Split-Brain脑裂的问题,一般有下面几种种方法: Quorums (法定人数) 方式: 比如3个节点的集群,Quorums = 2, 也就是说集群可以容忍1个节点失效,这时候还能选举出1个lead,集群还可用。比如4个节点的集群,它的Quorums = 3,Quorums要超过3,相当于集群的容忍度还是1,如果2个节点失效,那么整个集群还是无效的。这是zookeeper防止"脑裂"默认采用的方法。
采用Redundant communications (冗余通信)方式:集群中采用多种通信方式,防止一种通信方式失效导致集群中的节点无法通信。
Fencing (共享资源) 方式:比如能看到共享资源就表示在集群中,能够获得共享资源的锁的就是Leader,看不到共享资源的,就不在集群中。
要想避免zookeeper"脑裂"情况其实也很简单,在follower节点切换的时候不在检查到老的leader节点出现问题后马上切换,而是在休眠一段足够的时间,确保老的leader已经获知变更并且做了相关的shutdown清理工作了然后再注册成为master就能避免这类问题了,这个休眠时间一般定义为与zookeeper定义的超时时间就够了,但是这段时间内系统可能是不可用的,但是相对于数据不一致的后果来说还是值得的。
1: zooKeeper默认采用了Quorums 这种方式来防止"脑裂"现象。即只有集群中超过半数节点投票才能选举出Leader。这样的方式可以确保leader的唯一性,要么选出唯一的一个leader,要么选举失败。在zookeeper中Quorums作用如下:
假设某个leader假死,其余的followers选举出了一个新的leader。这时,旧的leader复活并且仍然认为自己是leader,这个时候它向其他followers发出写请求也是会被拒绝的。因为每当新leader产生时,会生成一个epoch标号(标识当前属于那个leader的统治时期),这个epoch是递增的,followers如果确认了新的leader存在,知道其epoch,就会拒绝epoch小于现任leader epoch的所
有请求。那有没有follower不知道新的leader存在呢,有可能,但肯定不是大多数,否则新leader无法产生。Zookeeper的写也遵循quorum机制,因此,得不到大多数支持的写是无效的,旧leader即使各种认为自己是leader,依然没有什么作用。
zookeeper除了可以采用上面默认的Quorums方式来避免出现"脑裂",还可以可采用下面的预防措施:
2: 添加冗余的心跳线,例如双线条线,尽量减少“裂脑”发生机会。
3: 启用磁盘锁。 正在服务一方锁住共享磁盘,“裂脑"发生时,让对方完全"抢不走"共享磁盘资源。但使用锁磁盘也会有一个不小的问题,如果占用共享盘的一方不主动"解锁”,另一方就永远得不到共享磁盘。现实中假如服务节点突然死机或崩溃,就不可能执行解锁命令。后备节点也就接管不了共享资源和应用服务。于是有人在HA中设计了"智能"锁。即正在服务的一方只在发现心跳线全部断开(察觉不到对端)时才启用磁盘锁。平时就不上锁了。
4: 设置仲裁机制。 例如设置参考IP(如网关IP),当心跳线完全断开时,2个节点都各自ping一下 参考IP,不通则表明断点就出在本端,不仅"心跳"、还兼对外"服务"的本端网络链路断了,即使启动(或继续)应用服务也没有用了,那就主动放弃竞争,让能够ping通参考IP的一端去起服务。更保险一些,ping不通参考IP的一方干脆就自我重启,以彻底释放有可能还占用着的那些共享资源。