获取资源请见文章第6节:资源获取】BP(Backpropagation)神经网络是一种常见的人工神经网络(ANN)结构,用于解决监督学习问题,如分类和回归。它由输入层、隐藏层和输出层组成,其中隐藏层可以有一个或多个。BP神经网络通过训练来学习输入和输出之间的映射关系,其中使用的主要算法是反向传播。
以下是BP神经网络的一些关键特点和组成部分:



为提高BP神经网络模型的模拟能力,构建SSA-BP神经网络模型,使其在进行局部搜索的过程中,快速找出权重和阈值更新的最优位置,为BF神经网络的训练提供更好的参数。SSA算法中,首先需对相关参数进行初始化,包括初始数据规模、自变量个数、自变量上下限等,并计算初始适应度值,适应度值代表寻优后的参数方案适配程度,在迭代的过程中需对各参数进行更新。其次对各参数进行优化,计算优化后的适应度值。最后判断各参数和适应度值是否满足条件,若满足则退出,输出结果,否则重复执行上述过程,SSA-BP神经网络模型计算流程如图所示:

%% 初始化BP神经网络和群智能算法参数
indim=12; % 输入层数(由数据集的输入特征数决定)
hiddennum=6; % 隐含层数
outdim=1; % 输出层数
N=40; % 种群数量
dim=(indim+1)*hiddennum+(hiddennum+1)*outdim; % 变量维度,待优化参数个数
Max_iter=30; % 最大迭代次数
lb=-5; % 下限
ub=5; % 上限
net=newff(minmax(Ptrain),[hiddennum,outdim],{'tansig','purelin'});
fobj= @(x) fitcal(x,net,indim,hiddennum,outdim,dim,Ptrain,Ttrain,minAllSamOut,maxAllSamOut);


