好的表定义至少需要达到以下几个目标:
表定义在数据库设计阶段创建,在SQL调优过程中进行审视和修改。
进行数据库设计时,表设计上的一些关键项将严重影响后续整库的查询性能。表设计对数据存储也有影响:好的表设计能够减少I/O操作及最小化内存使用,进而提升查询性能。
表的存储模型选择是表定义的第一步。客户业务属性是表的存储模型的决定性因素,依据下面表格选择适合当前业务的存储模型。
| 存储模型 | 适用场景 |
|---|---|
| 行存 | 点查询(返回记录少,基于索引的简单查询)。增删改比较多的场景。 |
| 列存 | 统计分析类查询(group 、join多的场景)。 |
局部聚簇(Partial Cluster Key)是列存下的一种技术。这种技术可以通过min/max稀疏索引较快的实现基表扫描的filter过滤。Partial Cluster Key可以指定多列,但是一般不建议超过2列。Partial Cluster Key的选取原则:
分区表是把逻辑上的一张表根据某种方案分成几张物理块进行存储。这张逻辑上的表称之为分区表,物理块称之为分区。分区表是一张逻辑表,不存储数据,数据实际是存储在分区上的。分区表和普通表相比具有以下优点:
改善查询性能:对分区对象的查询可以仅搜索自己关心的分区,提高检索效率。
增强可用性:如果分区表的某个分区出现故障,表在其他分区的数据仍然可用。
方便维护:如果分区表的某个分区出现故障,需要修复数据,只修复该分区即可。
openGauss数据库支持的分区表为一级分区表和二级分区表,其中一级分区表包括范围分区表、间隔分区表、列表分区表、哈希分区表四种,二级分区表包括范围分区、列表分区、哈希分区两两组合的九种。
高效数据类型,主要包括以下三方面:
尽量使用执行效率比较高的数据类型
一般来说整型数据运算(包括=、>、<、≧、≦、≠等常规的比较运算,以及group by)的效率比字符串、浮点数要高。比如某客户场景中对列存表进行点查询,filter条件在一个numeric列上,执行时间为10+s;修改numeric为int类型之后,执行时间缩短为1.8s左右。
尽量使用短字段的数据类型
长度较短的数据类型不仅可以减小数据文件的大小,提升IO性能;同时也可以减小相关计算时的内存消耗,提升计算性能。比如对于整型数据,如果可以用smallint就尽量不用int,如果可以用int就尽量不用bigint。
使用一致的数据类型
表关联列尽量使用相同的数据类型。如果表关联列数据类型不同,数据库必须动态地转化为相同的数据类型进行比较,这种转换会带来一定的性能开销。
👍 点赞,你的认可是我创作的动力!
⭐️ 收藏,你的青睐是我努力的方向!
✏️ 评论,你的意见是我进步的财富!
