• 深度强化学习(六)(改进价值学习)


    深度强化学习(六)(改进价值学习)

    一.经验回放

    把智能体与环境交互的记录(即经验)储存到 一个数组里,事后反复利用这些经验训练智能体。这个数组被称为经验回放数组(replay buffer)。

    具体来说, 把智能体的轨迹划分成 ( s t , a t , r t , s t + 1 ) \left(s_t, a_t, r_t, s_{t+1}\right) (st,at,rt,st+1) 这样的四元组, 存入一个数组。需要人为指定数组的大小 (记作 b b b )。数组中只保留最近 b b b 条数据; 当数组存满之后, 删除掉最旧的数据。数组的大小 b b b 是个需要调的超参数, 会影响训练的结果。通常设置 b b b 1 0 5 ∼ 1 0 6 10^5 \sim 10^6 105106

    在实践中,要等回放数组中有足够多的四元组时,才开始做经验回放更新DQN。

    • 经验回放的一个好处在于打破序列的相关性。训练 DQN 的时候, 每次我们用一个四元组对 DQN 的参数做一次更新。我们希望相邻两次使用的四元组是独立的。然而当智能体收集经验的时候, 相邻两个四元组 ( s t , a t , r t , s t + 1 ) \left(s_t, a_t, r_t, s_{t+1}\right) (st,at,rt,st+1) ( s t + 1 , a t + 1 , r t + 1 , s t + 2 ) \left(s_{t+1}, a_{t+1}, r_{t+1}, s_{t+2}\right) (st+1,at+1,rt+1,st+2) 有很强的相关性。依次使用这些强关联的四元组训练 DQN, 效果往往会很差。经验回放每次从数组里随机抽取一个四元组, 用来对 DQN 参数做一次更新。这样随机抽到的四元组都是独立的, 消除了相关性。
    • 经验回放的另一个好处是重复利用收集到的经验, 而不是用一次就丢弃, 这样可以用更少的样本数量达到同样的表现。

    需要注意, 并非所有的强化学习方法都允许重复使用过去的经验。经验回放数组里的数据全都是用行为策略 (behavior policy) 控制智能体收集到的。在收集经验同时, 我们也在不断地改进策略。策略的变化导致收集经验时用的行为策略是过时的策略, 不同于当前我们想要更新的策略——即目标策略(target policy)。也就是说,经验回放数组中的经验通常是过时的行为策略收集的, 而我们真正想要学的目标策略不同于过时的行为策略。

    有些强化学习方法允许行为策略不同于目标策略。这样的强化学习方法叫做异策略 (off-policy)。比如 Q \mathrm{Q} Q 学习、确定策略梯度 (DPG) 都属于异策略。由于它们允许行为策略不同于目标策略, 过时的行为策略收集到的经验可以被重复利用。经验回放适用于异策略。

    二.优先经验回放

    优先经验回放给每个四元组一个权重, 然后根据权重做非均匀随机抽样。如果 DQN 对 ( s j , a j ) \left(s_j, a_j\right) (sj,aj) 的价值判断不准确, 即 Q ( s j , a j ; w ) Q\left(s_j, a_j ; \boldsymbol{w}\right) Q(sj,aj;w) Q ⋆ ( s j , a j ) Q_{\star}\left(s_j, a_j\right) Q(sj,aj) 较远,则四元组 ( s j , a j , r j , s j + 1 ) \left(s_j, a_j, r_j, s_{j+1}\right) (sj,aj,rj,sj+1) 应当有较高的权重。

    因此, 要是 ∣ Q ( s j , a j ; w ) − Q ⋆ ( s j , a j ) ∣ \left|Q\left(s_j, a_j ; \boldsymbol{w}\right)-Q_{\star}\left(s_j, a_j\right)\right| Q(sj,aj;w)Q(sj,aj) 较大, 则应该给样本 ( s j , a j , r j , s j + 1 ) \left(s_j, a_j, r_j, s_{j+1}\right) (sj,aj,rj,sj+1) 较高的权重。然而实际上我们不知道 Q ⋆ Q_{\star} Q, 因此无从得知 ∣ Q ( s j , a j ; w ) − Q ⋆ ( s j , a j ) ∣ \left|Q\left(s_j, a_j ; \boldsymbol{w}\right)-Q_{\star}\left(s_j, a_j\right)\right| Q(sj,aj;w)Q(sj,aj) 。不妨把它替换成 TD 误差。回忆一下, TD 误差的定义是:
    δ j ≜ Q ( s j , a j ; w now  ) − [ r t + γ ⋅ max ⁡ a ∈ A Q ( s j + 1 , a ; w now  ) ] ⏟ 即 TD 目标  . \delta_j \triangleq Q\left(s_j, a_j ; \boldsymbol{w}_{\text {now }}\right)-\underbrace{\left[r_t+\gamma \cdot \max _{a \in \mathcal{A}} Q\left(s_{j+1}, a ; \boldsymbol{w}_{\text {now }}\right)\right]}_{\text {即 TD 目标 }} . δjQ(sj,aj;wnow ) TD 目标  [rt+γaAmaxQ(sj+1,a;wnow )].

    如果 TD 误差的绝对值 ∣ δ j ∣ \left|\delta_j\right| δj 大, 说明 DQN 对 ( s j , a j ) \left(s_j, a_j\right) (sj,aj) 的真实价值的评估不准确, 那么应该给 ( s j , a j , r j , s j + 1 ) \left(s_j, a_j, r_j, s_{j+1}\right) (sj,aj,rj,sj+1) 设置较高的权重。

    优先经验回放对数组里的样本做非均匀抽样。四元组 ( s j , a j , r j , s j + 1 ) \left(s_j, a_j, r_j, s_{j+1}\right) (sj,aj,rj,sj+1) 的权重是 TD 误差的绝对值 ∣ δ j ∣ \left|\delta_j\right| δj 。有两种方法设置抽样概率。一种抽样概率是:
    p j ∝ ∣ δ j ∣ + ϵ . p_j \propto\left|\delta_j\right|+\epsilon . pjδj+ϵ.

    此处的 ϵ \epsilon ϵ 是个很小的数, 防止抽样概率接近零, 用于保证所有样本都以非零的概率被抽到。另一种抽样方式先对 ∣ δ j ∣ \left|\delta_j\right| δj 做降序排列, 然后计算
    p j ∝ 1 rank ⁡ ( j ) . p_j \propto \frac{1}{\operatorname{rank}(j)} . pjrank(j)1.

    此处的 rank ⁡ ( j ) \operatorname{rank}(j) rank(j) ∣ δ j ∣ \left|\delta_j\right| δj 的序号。大的 ∣ δ j ∣ \left|\delta_j\right| δj 的序号小, 小的 ∣ δ j ∣ \left|\delta_j\right| δj 的序号大。两种方式的原理是一样的, ∣ δ j ∣ \left|\delta_j\right| δj 大的样本被抽样到的概率大。

    优先经验回放做非均匀抽样, 四元组 ( s j , a j , r j , s j + 1 ) \left(s_j, a_j, r_j, s_{j+1}\right) (sj,aj,rj,sj+1) 被抽到的概率是 p j p_j pj 。对于那些更重要的样本,被抽中的次数更多,参数更新的次数越多,为使更新效果更好可以适当减小学习率,适当减小学习率可以使得更新方向更精准,同时也使样本的被抽中得概率 p j p_j pj不会剧烈下降,保证更新次数。可以这样设置学习率:
    α j = α ( b ⋅ p j ) β , \alpha_j=\frac{\alpha}{\left(b \cdot p_j\right)^\beta}, αj=(bpj)βα,
    $\text { 此处的 } b \text { 是经验回放数组中样本的总数, } \beta \in(0,1) \text { 是个需要调的超参数 } $

    三.高估问题

    x 1 , ⋯   , x d x_1, \cdots, x_d x1,,xd 为任意 d d d 个实数。往 x 1 x_1 x1, ⋯   , x d \cdots, x_d ,xd 中加入任意均值为零的随机噪声, 得到 Z 1 , ⋯   , Z d Z_1, \cdots, Z_d Z1,,Zd, 它们是随机变量, 随机性来源于随机噪声。我们有如下不等式
    E [ max ⁡ ( Z 1 , ⋯   , Z d ) ] ≥ max ⁡ ( x 1 , ⋯   , x d ) \mathbb{E}\left[\max \left(Z_1, \cdots, Z_d\right)\right] \geq \max \left(x_1, \cdots, x_d\right) E[max(Z1,,Zd)]max(x1,,xd)
    proof:利用琴生不等式,我们有 E [ f ( x ) ] ≥ f ( E [ x ] ) \Bbb E[f(x)]\geq f(\Bbb E[x]) E[f(x)]f(E[x]),如果 f ( x ) f(x) f(x)是一个凸函数。而 max ( x 1 , x 2 , … , x d ) \text{max}(x_1,x_2,\ldots,x_d) max(x1,x2,,xd)显然是凸的。

    这个不等式意味着先加入均值为零的噪声,然后求最大值,会产生高估。

    假设对于所有的动作 a ∈ A a \in \mathcal{A} aA 和状态 s ∈ S , D Q N s \in \mathcal{S}, \mathrm{DQN} sS,DQN 的输出是真实价值 Q ⋆ ( s , a ) Q_{\star}(s, a) Q(s,a) 加上均值为零的随机噪声 ϵ \epsilon ϵ :
    Q ( s , a ; w ) = Q ⋆ ( s , a ) + ϵ . Q(s, a ; \boldsymbol{w})=Q_{\star}(s, a)+\epsilon . Q(s,a;w)=Q(s,a)+ϵ.

    显然 Q ( s , a ; w ) Q(s, a ; \boldsymbol{w}) Q(s,a;w) 是对真实价值 Q ⋆ ( s , a ) Q_{\star}(s, a) Q(s,a) 的无偏估计。有这个不等式:
    E ϵ [ max ⁡ a ∈ A Q ( s , a ; w ) ] ≥ max ⁡ a ∈ A Q ⋆ ( s , a ) . \mathbb{E}_\epsilon\left[\max _{a \in \mathcal{A}} Q(s, a ; \boldsymbol{w})\right] \geq \max _{a \in \mathcal{A}} Q_{\star}(s, a) . Eϵ[aAmaxQ(s,a;w)]aAmaxQ(s,a).

    公式说明哪怕 DQN 是对真实价值的无偏估计, 但是如果求最大化, DQN 就会高估真实价值。复习一下, TD 目标是这样算出来的:
    y ^ j = r j + γ ⋅ max ⁡ a ∈ A Q ( s j + 1 , a ; w ) ⏟ 高估  max ⁡ a ∈ A Q ⋆ ( s j + 1 , a ) . \widehat{y}_j=r_j+\gamma \cdot \underbrace{\max _{a \in \mathcal{A}} Q\left(s_{j+1}, a ; \boldsymbol{w}\right)}_{\text {高估 } \max _{a \in \mathcal{A}} Q_{\star}\left(s_{j+1}, a\right)} . y j=rj+γ高估 maxaAQ(sj+1,a) aAmaxQ(sj+1,a;w).

    这说明 TD 目标 y ^ j \widehat{y}_j y j 通常是对真实价值 Q ⋆ ( s j , a j ) Q_{\star}\left(s_j, a_j\right) Q(sj,aj) 的高估。TD 算法鼓励 Q ( s j , a j ; w ) Q\left(s_j, a_j ; \boldsymbol{w}\right) Q(sj,aj;w) 接近 T D \mathrm{TD} TD 目标 y ^ j \widehat{y}_j y j, 这会导致 Q ( s j , a j ; w ) Q\left(s_j, a_j ; \boldsymbol{w}\right) Q(sj,aj;w) 高估真实价值 Q ⋆ ( s j , a j ) Q_{\star}\left(s_j, a_j\right) Q(sj,aj) 。高估再通过自举的方式传给下一项。

    想要避免DQN的高估,要么切断自举,要么避免最大化造成高估

    四.使用目标网络

    想要切断自举,可以用另一个神经网络计算TD目标,而不是用DQN自己计算TD目标。另一个神经网络被称作目标网络(target network)。把目标网络记作:
    Q ( s , a ; w − ) Q\left(s, a ; \boldsymbol{w}^{-}\right) Q(s,a;w)
    设DQN和目标网络当前的参数分别为 w n o w w_{now} wnow w n o w − w^−_{now} wnow

    执行下面的步骤对参数做一次更新:

    1. 对 DQN 做正向传播, 得到:
      q ^ j = Q ( s j , a j ; w now  ) . \widehat{q}_j=Q\left(s_j, a_j ; \boldsymbol{w}_{\text {now }}\right) . q j=Q(sj,aj;wnow ).
    2. 对目标网络做正向传播, 得到
      q ^ j + 1 − = max ⁡ a ∈ A Q ( s j + 1 , a ; w now  − ) . \hat q_{j+1}^{-}=\max _{a \in \mathcal{A}} Q\left(s_{j+1}, a ; \boldsymbol{w}_{\text {now }}^{-}\right) . q^j+1=aAmaxQ(sj+1,a;wnow ).
    3. 计算 TD 目标和 TD 误差:
      y ^ j = r j + γ ⋅ q ^ j + 1 −  和  δ j = q ^ j − y ^ j . \hat y_j=r_j+\gamma \cdot \hat q_{j+1}^{-} \quad \text { 和 } \quad \delta_j=\widehat{q}_j-\widehat{y}_j . y^j=rj+γq^j+1  δj=q jy j.
    4. 对 DQN 做反向传播, 得到梯度 ∇ w Q ( s j , a j ; w now  ) \nabla_{\boldsymbol{w}} Q\left(s_j, a_j ; \boldsymbol{w}_{\text {now }}\right) wQ(sj,aj;wnow )
    5. 做梯度下降更新 DQN 的参数:
      w new  ← w now  − α ⋅ δ j ⋅ ∇ w Q ( s j , a j ; w now  ) . \boldsymbol{w}_{\text {new }} \leftarrow \boldsymbol{w}_{\text {now }}-\alpha \cdot \delta_j \cdot \nabla_{\boldsymbol{w}} Q\left(s_j, a_j ; \boldsymbol{w}_{\text {now }}\right) . wnew wnow αδjwQ(sj,aj;wnow ).
    6. τ ∈ ( 0 , 1 ) \tau \in(0,1) τ(0,1) 是需要手动调的超参数。做加权平均更新目标网络的参数:

    w new  − ← τ ⋅ w new  + ( 1 − τ ) ⋅ w now  − . \boldsymbol{w}_{\text {new }}^{-} \leftarrow \tau \cdot \boldsymbol{w}_{\text {new }}+(1-\tau) \cdot \boldsymbol{w}_{\text {now }}^{-} . wnew τwnew +(1τ)wnow .

    五.双Q学习

    双Q学习总体上可以认为将选则与求值进行了解耦操作,缓解了高估问题

    回顾一下 Q \mathrm{Q} Q 学习算法中的 TD 目标:
    y ^ j = r j + γ ⋅ max ⁡ a ∈ A Q ( s j + 1 , a ; w ) . \widehat{y}_j=r_j+\gamma \cdot \max _{a \in \mathcal{A}} Q\left(s_{j+1}, a ; \boldsymbol{w}\right) . y j=rj+γaAmaxQ(sj+1,a;w).

    不妨把最大化拆成两步:

    1. 选择一一即基于状态 s j + 1 s_{j+1} sj+1, 选出一个动作使得 DQN 的输出最大化:
      a ⋆ = argmax ⁡ a ∈ A Q ( s j + 1 , a ; w ) . a^{\star}=\underset{a \in \mathcal{A}}{\operatorname{argmax}} Q\left(s_{j+1}, a ; \boldsymbol{w}\right) . a=aAargmaxQ(sj+1,a;w).
    2. 求值一一即计算 ( s j + 1 , a ⋆ ) \left(s_{j+1}, a^{\star}\right) (sj+1,a) 的价值, 从而算出 TD 目标:
      y ^ j = r j + Q ( s j + 1 , a ⋆ ; w ) . \widehat{y}_j=r_j+Q\left(s_{j+1}, a^{\star} ; \boldsymbol{w}\right) . y j=rj+Q(sj+1,a;w).

    以上是原始的 Q \mathrm{Q} Q 学习算法, 选择和求值都用 D Q N \mathrm{DQN} DQN 。上一节改进了 Q \mathrm{Q} Q 学习, 选择和求值都用目标网络:

    • 选择 : a − = argmax ⁡ a ∈ A Q ( s j + 1 , a ; w − ) \quad a^{-}=\underset{a \in \mathcal{A}}{\operatorname{argmax}} Q\left(s_{j+1}, a ; \boldsymbol{w}^{-}\right) a=aAargmaxQ(sj+1,a;w),
    • 求值: y ^ j − = r j + Q ( s j + 1 , a − ; w − ) \quad \widehat{y}_j^{-}=r_j+Q\left(s_{j+1}, a^{-} ; \boldsymbol{w}^{-}\right) y j=rj+Q(sj+1,a;w).

    本节介绍双 Q \mathrm{Q} Q 学习, 第一步的选择用 DQN, 第二步的求值用目标网络:

    • 选择: a ⋆ = argmax ⁡ a ∈ A Q ( s j + 1 , a ; w ) \quad a^{\star}=\underset{a \in \mathcal{A}}{\operatorname{argmax}} Q\left(s_{j+1}, a ; \boldsymbol{w}\right) a=aAargmaxQ(sj+1,a;w),
    • 求值 : y ~ j = r j + Q ( s j + 1 , a ⋆ ; w − ) \quad \tilde{y}_j=r_j+Q\left(s_{j+1}, a^{\star} ; \boldsymbol{w}^{-}\right) y~j=rj+Q(sj+1,a;w).

    不难证明出这个不等式:
    Q ( s j + 1 , a ⋆ ; w − ) ⏟ 双  Q  学习  ≤ max ⁡ a ∈ A Q ( s j + 1 , a ; w − ) ⏟ 用目标网络的  Q  学习  . \underbrace{Q\left(s_{j+1}, a^{\star} ; \boldsymbol{w}^{-}\right)}_{\text {双 } \mathrm{Q} \text { 学习 }} \leq \underbrace{\max _{a \in \mathcal{A}} Q\left(s_{j+1}, a ; \boldsymbol{w}^{-}\right)}_{\text {用目标网络的 } \mathrm{Q} \text { 学习 }} .  Q 学习  Q(sj+1,a;w)用目标网络的 Q 学习  aAmaxQ(sj+1,a;w).

    因此,
    y ~ t ⏟ 双  Q  学习  ≤ y ~ t − ⏟ 用目标网络的  Q  学习  . \underbrace{\tilde{y}_t}_{\text {双 } \mathrm{Q} \text { 学习 }} \leq \underbrace{\widetilde{y}_t^{-}}_{\text {用目标网络的 } \mathrm{Q} \text { 学习 }} .  Q 学习  y~t用目标网络的 Q 学习  y t.

    这个公式说明双 Q \mathrm{Q} Q 学习得到的 TD 目标更小。也就是说, 与用目标网络的 Q \mathrm{Q} Q 学习相比,双 Q 学习缓解了高估。

  • 相关阅读:
    NOI / 2.4基本算法之分治-2991:2011
    费马小定理,876. 快速幂求逆元
    打破AI算力成本困局 趋动科技即将重磅发布全球首个AI算力池化云服务
    Netty实现udp发送消息给指定客户端
    射频与微波综合测试仪-4958手持式微波综合测试仪
    Tomcat 开启远程调试
    gsap中文地址
    数据结构_笔记_第1章:绪论
    4、数据结构
    拿下Spring全家桶后,我跳槽了
  • 原文地址:https://blog.csdn.net/weixin_54255111/article/details/136771291