• ES分片均衡策略分析与改进


    从故障说起

    某日早高峰收到 Elasticsearch 大量查询超时告警,不同于以往,查看 Elasticsearch 查询队列监控后发现,仅123节点存在大量查询请求堆积。

    图片

    各节点查询队列堆积情况

    查看节点监控发现,123节点的 IO 占用远高于其他节点。

    图片

    图片

    节点间IO占用对比

    最终查明原因是,某些高负载(高读写 qps、大数据量、复杂查询)的索引分片相对集中在123节点上,导致整体集群节点间负载不均衡,严重时甚至引发故障。那么这种现象是普遍存在的吗?

    在观察了其他集群后发现,各个集群均有不同程度的“负载不均衡”现象,同为数据节点,有的 IO 比其他节点高出一倍以上,有的 CPU 占用大幅超过其他节点。我们知道 Elasticsearch 的读写速度遵循木桶原理,即某台节点如果表现不佳的话会拖慢整个请求的 RT。严重时甚至出现线上故障。因此,尽可能的保持节点间负载的均衡,既能保证集群性能处于最优状态,又能最大限度利用硬件资源,保障集群稳定性

    图片

    各节点IO占用情况

    图片

    各节点CPU占用情况

    然而,其实 Elasticsearch 自己是有集群分配自动均衡能力的,但是为什么还会出现上述情况呢?这里需要我们深入分析一下。

    ES分片均衡策略

    概念

    首先来看下 LLM 对 Elasticsearch 分片均衡的解释:

    Elasticsearch 的分片均衡是指将索引的分片均匀地分布在集群中的各个节点上,以实现负载均衡和高可用性。在 Elasticsearch 中,索引被分为多个分片,每个分片可以在不同的节点上进行存储和处理。分片均衡的目标是确保每个节点上的分片数量大致相等,避免某些节点负载过重,而其他节点负载较轻的情况。
    

    似乎只提到了“确保每个节点上的分片数量大致相等”,事实是这样吗?不多说,直接翻源码一探究竟。

    均衡策略

    这里展示了核心的分片权重计算部分代码,indexBalance 和 shardBalance 分别表示索引维度权重因子和分片维度权重因子。node.numShards() 表示该节点目前总共的分片数。balancer.avgShardsPerNode() 表示总分片数/总结点数,也就是理想状态下单个节点应该被分配的分片数。node.numShards(index) 表示该索引在当前节点的分片数。balancer.avgShardsPerNode(index) 表示该索引总分片数/总结点数,也就是理想状态下单个节点该索引应该被分配的分片数。

    1.   WeightFunction(float indexBalance, float shardBalance) {
    2.     float sum = indexBalance + shardBalance;
    3.     if (sum <= 0.0f) {
    4.         throw new IllegalArgumentException("Balance factors must sum to a value > 0 but was: " + sum);
    5.     }
    6.     theta0 = shardBalance / sum;
    7.     theta1 = indexBalance / sum;
    8.     this.indexBalance = indexBalance;
    9.     this.shardBalance = shardBalance;
    10.   }
    11.   float weight(Balancer balancer, ModelNode node, String index) {
    12.     final float weightShard = node.numShards() - balancer.avgShardsPerNode();
    13.     final float weightIndex = node.numShards(index) - balancer.avgShardsPerNode(index);
    14.     return theta0 * weightShard + theta1 * weightIndex;
    15.   }

    即权重公式为:分片权重因子 * (当前节点分片数 - 理想平均分片数) + 索引权重因子 * (当前节点该索引分片数 - 理想该索引平均分片数)

    1.   // get the delta between the weights of the node we are checking and the node that holds the shard
    2.   float currentDelta = absDelta(nodeWeight, currentWeight);
    3.   // checks if the weight delta is above a certain threshold; if it is not above a certain threshold,
    4.   // then even though the node we are examining has a better weight and may make the cluster balance
    5.   // more even, it doesn't make sense to execute the heavyweight operation of relocating a shard unless
    6.   // the gains make it worth it, as defined by the threshold
    7.   boolean deltaAboveThreshold = lessThan(currentDelta, threshold) == false;

    当我们得到节点当前的权重后,下一步需要和其他节点权重相比较,若权重差值超过 threshold ,则认为当前分片分布不均匀,需要重新均衡。

    相关配置

    上述逻辑涉及到以下几个配置:

    • cluster.routing.allocation.balance.shard: 0.45f(默认)

      • 分片权重因子 越高节点层面分片数量的均衡权重越高

    • cluster.routing.allocation.balance.index: 0.55f(默认)

      • 索引权重因子 越高索引层面分片数量的均衡权重越高

    • cluster.routing.allocation.balance.threshold: 1.0f(默认)

      • 重新分配分片阈值 越高触发自均衡的条件越苛刻

    除此之外还有以下配置涉及分片分布、均衡:

    • cluster.routing.allocation.total_shards_per_node: -1(默认)

      • 单节点最大允许的分片数量,默认不限制

    • cluster.routing.allocation.cluster_concurrent_rebalance: 2(默认)

      • 集群内因“不均衡”而触发的最大分片迁移并发数量。

    • cluster.routing.allocation.node_concurrent_recoveries: 2(默认)

      • 单个节点因“不均衡”而触发的最大分片迁移并发数量。

    举个栗子

    图片

    分片均衡前

    假设当前集群有两个节点,两个索引(A索引4分片,B索引2分片,C索引2分片),分布状态如上图。

    此时Node 1的权重为 0.45 * (4 - 3) + 0.55 * (2 - 1.5) = 0.725,Node 2的权重为0.45 * (2 - 3) + 0.55 * (1 - 1.5) = -0.725。Node 1和Node 2的权重差为 1.45 超过了阈值 1,此时就可能出发索引分片迁移。将分配从高权重节点挪到低权重节点。

    图片

    分片均衡后

    触发条件

    在实际生产环境中,有时尽管满足了上述的“权重公式”,但却没有发生分配自动均衡。这是因为除了满足“权重公式”以外,还需要满足以下条件。

    均衡范围
    • cluster.routing.rebalance.enable: all

      1.   public Decision canRebalance(ShardRouting shardRouting, RoutingAllocation allocation) {
      2.     if (allocation.ignoreDisable()) {
      3.       return allocation.decision(Decision.YES, NAME, "allocation is explicitly ignoring any disabling of rebalancing");
      4.     }
      5.     Settings indexSettings = allocation.metadata().getIndexSafe(shardRouting.index()).getSettings();
      6.     final Rebalance enable;
      7.     final boolean usedIndexSetting;
      8.     if (INDEX_ROUTING_REBALANCE_ENABLE_SETTING.exists(indexSettings)) {
      9.       enable = INDEX_ROUTING_REBALANCE_ENABLE_SETTING.get(indexSettings);
      10.       usedIndexSetting = true;
      11.     } else {
      12.       enable = this.enableRebalance;
      13.       usedIndexSetting = false;
      14.     }
      15.     switch (enable) {
      16.       case ALL:
      17.         return allocation.decision(Decision.YES, NAME, "all rebalancing is allowed");
      18.       case NONE:
      19.         return allocation.decision(Decision.NO, NAME, "no rebalancing is allowed due to %s", setting(enable, usedIndexSetting));
      20.       case PRIMARIES:
      21.         if (shardRouting.primary()) {
      22.           return allocation.decision(Decision.YES, NAME, "primary rebalancing is allowed");
      23.         } else {
      24.           return allocation.decision(
      25.             Decision.NO,
      26.             NAME,
      27.             "replica rebalancing is forbidden due to %s",
      28.             setting(enable, usedIndexSetting)
      29.           );
      30.         }
      31.       case REPLICAS:
      32.         if (shardRouting.primary() == false) {
      33.           return allocation.decision(Decision.YES, NAME, "replica rebalancing is allowed");
      34.         } else {
      35.           return allocation.decision(
      36.             Decision.NO,
      37.             NAME,
      38.             "primary rebalancing is forbidden due to %s",
      39.             setting(enable, usedIndexSetting)
      40.           );
      41.         }
      42.       default:
      43.         throw new IllegalStateException("Unknown rebalance option");
      44.     }
      45.   }
      • all:允许所有分片自动均衡(默认)

      • primaries:只允许主分片自动均衡

      • replicas:只允许副本分片自动均衡

      • none:不允许自动均衡

    分片状态

    不健康的分片状态,可能会导致分片均衡失败,甚至因失败而丢失数据。

    • cluster.routing.allocation.allow_rebalance: indices_all_active

      1.   public Decision canRebalance(RoutingAllocation allocation) {
      2.     final RoutingNodes routingNodes = allocation.routingNodes();
      3.     switch (type) {
      4.       case INDICES_PRIMARIES_ACTIVE:
      5.         // check if there are unassigned primaries.
      6.         if (routingNodes.hasUnassignedPrimaries()) {
      7.           return NO_UNASSIGNED_PRIMARIES;
      8.         }
      9.         // check if there are initializing primaries that don't have a relocatingNodeId entry.
      10.         if (routingNodes.hasInactivePrimaries()) {
      11.           return NO_INACTIVE_PRIMARIES;
      12.         }
      13.         return YES_ALL_PRIMARIES_ACTIVE;
      14.       case INDICES_ALL_ACTIVE:
      15.         // check if there are unassigned shards.
      16.         if (routingNodes.hasUnassignedShards()) {
      17.           return NO_UNASSIGNED_SHARDS;
      18.         }
      19.         // in case all indices are assigned, are there initializing shards which
      20.         // are not relocating?
      21.         if (routingNodes.hasInactiveShards()) {
      22.           return NO_INACTIVE_SHARDS;
      23.         }
      24.         // fall-through
      25.       default:
      26.         // all shards active from above or type == Type.ALWAYS
      27.         return YES_ALL_SHARDS_ACTIVE;
      28.     }
      29.   }
      • always:无视分片状态,始终允许自动均衡

      • indices_primaries_active:仅在所有主分片可用时

      • indices_all_active:仅当所有分片都激活时(默认)

    磁盘水位

    如果分片均衡的目标节点磁盘使用率过高,此时不应该继续往改节点分配分片。

    • cluster.routing.allocation.disk.threshold_enabled: true(默认)

      • 启用基于磁盘的分发策略

    • cluster.routing.allocation.disk.watermark.low: "85%"(默认)

      • 硬盘使用率高于这个值的节点,则不会分配分片

    • cluster.routing.allocation.disk.watermark.high: "90%"(默认)

      • 如果硬盘使用率高于这个值,则会重新分片该节点的分片到别的节点

    1.   public Decision canAllocate(ShardRouting shardRouting, RoutingNode node, RoutingAllocation allocation) {
    2.     ... ...
    3.     if (freeDiskPercentage < diskThresholdSettings.getFreeDiskThresholdLow()) {
    4.       // If the shard is a replica or is a non-empty primary, check the low threshold
    5.       if (skipLowThresholdChecks == false) {
    6.         if (logger.isDebugEnabled()) {
    7.           logger.debug(
    8.             "more than the allowed {} used disk threshold ({} used) on node [{}], preventing allocation",
    9.             Strings.format1Decimals(usedDiskThresholdLow, "%"),
    10.             Strings.format1Decimals(usedDiskPercentage, "%"),
    11.             node.nodeId()
    12.           );
    13.         }
    14.         return allocation.decision(
    15.           Decision.NO,
    16.           NAME,
    17.           "the node is above the low watermark cluster setting [%s=%s], using more disk space than the maximum allowed [%s%%], actual free: [%s%%]",
    18.           CLUSTER_ROUTING_ALLOCATION_LOW_DISK_WATERMARK_SETTING.getKey(),
    19.           diskThresholdSettings.getLowWatermarkRaw(),
    20.           usedDiskThresholdLow,
    21.           freeDiskPercentage
    22.         );
    23.       }
    24.     }
    25.    ... ...
    26.     if (freeBytes < diskThresholdSettings.getFreeBytesThresholdHigh().getBytes()) {
    27.       if (logger.isDebugEnabled()) {
    28.         logger.debug(
    29.           "less than the required {} free bytes threshold ({} bytes free) on node {}, shard cannot remain",
    30.           diskThresholdSettings.getFreeBytesThresholdHigh(),
    31.           freeBytes,
    32.           node.nodeId()
    33.         );
    34.       }
    35.       return allocation.decision(
    36.         Decision.NO,
    37.         NAME,
    38.         "the shard cannot remain on this node because it is above the high watermark cluster setting [%s=%s] "
    39.           + "and there is less than the required [%s] free space on node, actual free: [%s]",
    40.         CLUSTER_ROUTING_ALLOCATION_HIGH_DISK_WATERMARK_SETTING.getKey(),
    41.         diskThresholdSettings.getHighWatermarkRaw(),
    42.         diskThresholdSettings.getFreeBytesThresholdHigh(),
    43.         new ByteSizeValue(freeBytes)
    44.       );
    45.     }
    46.    ... ...
    47.   }

    原来如此,Elasticsearch 的分片均衡策略并没有我们想象中的那么智能,甚至可以说是简陋。光从分片的数量出发做均衡显然是不明智的,忽略了数据量、读写复杂度、热点流量、热点数据分布、硬件差异等重要参考因素,达不到生产所需要的要求。既然知道了这东西好像不太靠谱,那我们该如何进一步的提高分片“负载均衡度”呢?

    如何改进

    分片数量调整

    这个方法最简单,0门槛。只需确保索引的分片数量是集群的数据节点数量的整数倍即可。结合 Elasticsearch 的自动均衡策略,不考虑主副差异的话,可以做到相对完美的均衡。

    但也有一些缺点和副作用:

    • 节点数量比较多的话,分片数量设置不灵活,要么太多,过度消耗 CPU 资源,要么太少,单分片数据量过大。

    • 随着业务的变迁,集群规模往往会发生变动,尤其是数据节点。一旦发生变动,之前保持的平衡被完全破坏。需要话大把的精力修改分片数量、重建索引再次保持平衡(大规模的集群基本做不到)。

    • 不兼容集群的动态扩缩容

    自研分片均衡工具

    我们需要一个在任意分片数量下也尽可能保持负载均衡的策略/工具。

    图片

    分片均衡工具

    为了确保最终实现的是真正的负载均衡,因此,分片均衡的依据只能是集群的负载(而不是数量)。

    首先确定几个需要平衡的指标,如 CPU 、 IO 、MBPS、RAM 等。对数据节点上的这些指标做监控,并统一送到均衡工具侧分析处理。

    给定公式

    $$ {E}{i}=o\times {IO}{i}+d\times {MBPS}{i}+c\times {CPU}{i}+r\times {RAM}_{i} $$

    表示节点i的负载指标,o、d、c、r 分别为 IO 使用率、网络带宽使用率、CPU 使用率、内存使用率。

    当负载指标出现不均衡时,如最高的节点超过最低的节点50%,且最高的节点此项负载达到50%以上时。此时需要将高负载节点上的部分分片均衡到低负载节点上。

    此时,结合 Elasticsearch 业务网关侧的流量指标数据,取请求时长最高(请求数量 * avg(RT))的索引(热点索引),若该索引分片在高负载节点上的数量多于低负载节点,则将该索引的高负载节点分片迁移到低负载节点,单次只迁移一个分片。否则取下一个时长最高的索引分析处理。

    在实际生产环境中,分片迁移会带来额外的 IO 开销,这极有可能会影响到线上业务,甚至加剧“不平衡”。因此,我们需要确保分片只在可允许的时间范围内迁移。由于我们的业务晚上负载大幅降低,因此晚上是我们的分片迁移窗口。

    有些集群的业务比较特殊或者重要,也可以选择不自动迁移分片,只提供分片可平衡预警。

    图片

    分片均衡流程

    未来展望

    智能化均衡策略

    未来的分片均衡工具可能会更智能化,可能会引入更复杂的算法,以更准确地评估节点间的负载状况,从而更精准地进行分片迁移和分配。

    实时监控和反馈

    未来的工具可能会提供更实时的监控和反馈机制,可以及时发现节点负载不均衡的情况,并采取相应的措施。这可能包括更频繁的监控检测、更灵活的告警机制以及更快速的响应方式,以便更快地调整分片的分布。

    动态迁移窗口

    为了减少对线上业务的影响,未来的工具可能会引入更智能的分片迁移策略。这可能包括在业务低谷期间动态选择分片迁移窗口,以最小化对实时业务的干扰。

    自定义调整策略

    未来工具可能会提供更多的可配置选项,允许用户根据自己的业务特性和需求定制分片均衡策略。这可能包括调整均衡阈值、指定特定索引的均衡规则等。

    总结一下

    基于 Elasticsearch 的读写原理及特性:

    读的时候:取所有节点的查询数据汇总并返回最终结果。

    写的时候:确保主分片和副本分片都写入成功后,才返回写入成功。

    不均衡的集群节点,会导致读写RT上涨,严重时请求堆积甚至拒绝从而产生故障。节点均衡能最大限度的发挥 Elasticsearch 底层硬件的能力,提高资源利用率。而 Elasticsearch 的分片均衡策略比我们想象的弱的多的多,千万步v不要盲目信任(来自故障的血的教训),单纯的做到分片数量均衡并不代表节点负载就均衡了。在实际生产中,不同分片的数据量、数据热度、读写复杂度均不相同,要做到真正的节点间负载均衡只能从“负载”出发。结合集群、业务两方面的监控数据,分析对节点负载影响最大的索引、分片,优先均衡高负载分片,最少迁移分片,最快均衡分片。

  • 相关阅读:
    qnx 工程目录创建工具 addvariant
    数组模拟堆实现堆排序
    Hudi Spark源码学习总结-df.write.format(“hudi“).save
    面经-虚拟机-JVM垃圾回收算法
    【附源码】计算机毕业设计JAVA计算机在线学习管理系统-
    探寻JWT的本质:它是什么?它有什么作用?
    从 Vue2向Vue3的迁移
    前端研习录(29)——JavaScript CSS操作讲解及示例分析
    数据结构与算法分析——数学基础(为之后的算法分析打基础)
    C语言中的异常处理机制是什么?
  • 原文地址:https://blog.csdn.net/woshaguayi/article/details/136653109