• leetcode - 1428. Leftmost Column with at Least a One


    Description

    A row-sorted binary matrix means that all elements are 0 or 1 and each row of the matrix is sorted in non-decreasing order.

    Given a row-sorted binary matrix binaryMatrix, return the index (0-indexed) of the leftmost column with a 1 in it. If such an index does not exist, return -1.

    You can’t access the Binary Matrix directly. You may only access the matrix using a BinaryMatrix interface:

    • BinaryMatrix.get(row, col) returns the element of the matrix at index (row, col) (0-indexed).
    • BinaryMatrix.dimensions() returns the dimensions of the matrix as a list of 2 elements [rows, cols], which means the matrix is rows x cols.

    Submissions making more than 1000 calls to BinaryMatrix.get will be judged Wrong Answer. Also, any solutions that attempt to circumvent the judge will result in disqualification.

    For custom testing purposes, the input will be the entire binary matrix mat. You will not have access to the binary matrix directly.

    Example 1:

    Input: mat = [[0,0],[1,1]]
    Output: 0
    
    • 1
    • 2

    Example 2:

    Input: mat = [[0,0],[0,1]]
    Output: 1
    
    • 1
    • 2

    Example 3:

    Input: mat = [[0,0],[0,0]]
    Output: -1
    
    • 1
    • 2

    Constraints:

    rows == mat.length
    cols == mat[i].length
    1 <= rows, cols <= 100
    mat[i][j] is either 0 or 1.
    mat[i] is sorted in non-decreasing order.
    
    • 1
    • 2
    • 3
    • 4
    • 5

    Solution

    Binary Search

    For each row, do a binary search, and update the leftmost column index.

    Time complexity: o ( log ⁡ n ∗ m ) o(\log n * m) o(lognm)
    Space complexity: o ( 1 ) o(1) o(1)

    Linear

    Solved after hints.

    Start from top right, if the current number is 0, go down. Otherwise go left.

    Time complexity: o ( m + n ) o(m+n) o(m+n)
    Space complexity: o ( 1 ) o(1) o(1)

    Code

    Binary Search

    # """
    # This is BinaryMatrix's API interface.
    # You should not implement it, or speculate about its implementation
    # """
    #class BinaryMatrix(object):
    #    def get(self, row: int, col: int) -> int:
    #    def dimensions(self) -> list[]:
    
    class Solution:
        def leftMostColumnWithOne(self, binaryMatrix: 'BinaryMatrix') -> int:
            rows, cols = binaryMatrix.dimensions()
            def find_index(row: int) -> int:
                left, right = 0, cols - 1
                while left < right:
                    mid = (left + right) >> 1
                    if binaryMatrix.get(row, mid) == 0:
                        left = mid + 1
                    else:
                        right = mid
                return (left + right) >> 1
            res = -1
            for i in range(rows):
                col_index = find_index(i)
                if binaryMatrix.get(i, col_index) == 1:
                    res = min(res, col_index) if res != -1 else col_index
            return res
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26

    Linear

    # """
    # This is BinaryMatrix's API interface.
    # You should not implement it, or speculate about its implementation
    # """
    #class BinaryMatrix(object):
    #    def get(self, row: int, col: int) -> int:
    #    def dimensions(self) -> list[]:
    
    class Solution:
        def leftMostColumnWithOne(self, binaryMatrix: 'BinaryMatrix') -> int:
            rows, cols = binaryMatrix.dimensions()
            cur_row, cur_col = 0, cols - 1
            res = cols
            while cur_row < rows and cur_col >= 0:
                if binaryMatrix.get(cur_row, cur_col) == 1:
                    res = min(res, cur_col)
                    cur_col -= 1
                else:
                    cur_row += 1
            return res if res != cols else -1
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
  • 相关阅读:
    Centos7.9云计算CloudStack4.15 高级网络配置(3)
    解疑 | TI毫米波雷达的ADC的有效启动时间设置的依据?
    手动模拟 calico 网络
    Unity记录5.5-地图-随机生成连续洞穴块
    隆重推出 Incredibuild 10
    TensorFlow之文本分类算法-2
    极狐GitLab CI x Vault,做好企业密钥安全合规管理
    grafana graphite statsd搭建安装部署 实时监控_亲测成功
    Deno 下一代JavaScript运行时
    内网渗透之Windows反弹shell(五)
  • 原文地址:https://blog.csdn.net/sinat_41679123/article/details/136595255