Redis是目前常用的内存型数据库之一,通过在内存中读写数据,大大提高了读写速度,可以说Redis是实现网站高并发不可或缺的一部分。
通过前面的学习我们知道,在Redis中有5种对象类型(字符串、哈希、列表、集合、有序集合),丰富的类型是Redis相对于Memcached等的一大优势。在了解Redis的5种对象类型的用法和特点的基础上,我们在本章进一步了解Redis的内存模型,对Redis的使用和日常排查问题都会有很大的帮助。如:
这篇文章主要介绍Redis的内存模型(以6.0为例),包括Redis占用内存的情况及如何查询、不同的对象类型在内存中的编码方式、内存分配器(jemalloc)、简单动态字符串(SDS)、RedisObject等;然后在此基础上介绍几个Redis内存模型的应用。
通过数据才能更好的排查说明问题,所以我们先来看在redis中如何查看Redis使用内存的情况。我们通过客户端redis-cli
连接服务器后,可以通过info命令可以查看内存使用情况:
127.0.0.1:6379> INFO memory
# Memory
used_memory:872704
used_memory_human:852.25K
used_memory_rss:3325952
used_memory_rss_human:3.17M
used_memory_peak:893272
used_memory_peak_human:872.34K
used_memory_peak_perc:97.70%
used_memory_overhead:831176
used_memory_startup:810296
used_memory_dataset:41528
used_memory_dataset_perc:66.54%
allocator_allocated:931496
allocator_active:1228800
allocator_resident:4710400
total_system_memory:8199360512
total_system_memory_human:7.64G
used_memory_lua:37888
used_memory_lua_human:37.00K
used_memory_scripts:0
used_memory_scripts_human:0B
number_of_cached_scripts:0
maxmemory:0
maxmemory_human:0B
maxmemory_policy:noeviction
allocator_frag_ratio:1.32
allocator_frag_bytes:297304
allocator_rss_ratio:3.83
allocator_rss_bytes:3481600
rss_overhead_ratio:0.71
rss_overhead_bytes:-1384448
mem_fragmentation_ratio:4.00
mem_fragmentation_bytes:2494272
mem_not_counted_for_evict:4
mem_replication_backlog:0
mem_clients_slaves:0
mem_clients_normal:20496
mem_aof_buffer:8
mem_allocator:jemalloc-5.1.0
active_defrag_running:0
lazyfree_pending_objects:0
lazyfreed_objects:0
127.0.0.1:6379>
其中,info命令可以显示redis服务器的许多信息,包括服务器基本信息、CPU、内存、持久化、客户端连接信息等等;上面INFO后面的memory(还有很多其他参数,如stats,persistence等等,请自行查看)是参数,表示只显示内存相关的信息。
返回结果中比较重要的几个说明如下:
因此,used_memory和used_memory_rss,前者是从Redis角度得到的量,后者是从操作系统角度得到的量。二者之所以有所不同,一方面是因为内存碎片和Redis进程运行需要占用内存,使得前者可能比后者小,另一方面虚拟内存的存在,使得前者可能比后者大。
由于在实际应用中,Redis的数据量会比较大,此时进程运行占用的内存与Redis数据量和内存碎片相比,都会小得多;因此used_memory_rss和used_memory的比例,便成了衡量Redis内存碎片率的参数;这个参数就是mem_fragmentation_ratio。
mem_fragmentation_ratio一般大于1,且该值越大,内存碎片比例越大。mem_fragmentation_ratio<1,说明Redis使用了虚拟内存,由于虚拟内存的媒介是磁盘,比内存速度要慢很多,当这种情况出现时,应该及时排查,如果内存不足应该及时处理,如增加Redis节点、增加Redis服务器的内存、优化应用等。
一般来说,mem_fragmentation_ratio在1.03左右是比较健康的状态(对于jemalloc来说);上面例子中的mem_fragmentation_ratio值很大(实例中为3.83),是因为还没有向Redis中存入数据,Redis进程本身运行的内存使得used_memory_rss 比used_memory大得多。
Redis作为内存数据库,在内存中存储的内容主要是数据(键值对);通过前面的叙述可以知道,除了数据以外,Redis的其他部分也会占用内存。
Redis的内存占用主要可以划分为以下几个部分:
作为数据库,数据是最主要的部分;这部分占用的内存会统计在used_memory中。
Redis使用键值对存储数据,其中的值(对象)包括5种类型,即字符串、哈希、列表、集合、有序集合。这5种类型是Redis对外提供的,实际上,在Redis内部,每种类型可能有2种或更多的内部编码实现;此外,Redis在存储对象时,并不是直接将数据扔进内存,而是会对对象进行各种包装:如redisObject、SDS等;后续将重点介绍Redis中数据存储的细节。
Redis主进程本身运行肯定需要占用内存,如代码、常量池等等;这部分内存大约几兆,在大多数生产环境中与Redis数据占用的内存相比可以忽略。这部分内存不是由jemalloc分配,因此不会统计在used_memory中。
注意:除了主进程外,Redis创建的子进程运行也会占用内存,如Redis执行AOF、RDB重写时创建的子进程。当然,这部分内存不属于Redis进程,也不会统计在used_memory和used_memory_rss中。
缓冲内存包括客户端缓冲区、复制积压缓冲区、AOF缓冲区等;其中,客户端缓冲存储客户端连接的输入输出缓冲;复制积压缓冲用于部分复制功能;AOF缓冲区用于在进行AOF重写时,保存最近的写入命令。在了解相应功能之前,不需要知道这些缓冲的细节;这部分内存由jemalloc分配,因此会统计在used_memory中。
内存碎片是Redis在分配、回收物理内存过程中产生的。例如,如果对数据的更改频繁,而且数据之间的大小相差很大,可能导致redis释放的空间在物理内存中并没有释放,但redis又无法有效利用,这就形成了内存碎片。内存碎片不会统计在used_memory中。
内存碎片的产生与对数据进行的操作、数据的特点等都有关;此外,与使用的内存分配器也有关系:如果内存分配器设计合理,可以尽可能的减少内存碎片的产生。后面将要说到的jemalloc便在控制内存碎片方面做的很好。
如果Redis服务器中的内存碎片已经很大,可以通过安全重启的方式减小内存碎片:因为重启之后,Redis重新从备份文件中读取数据,在内存中进行重排,为每个数据重新选择合适的内存单元,减小内存碎片。
关于Redis数据存储的细节,涉及到内存分配器(如jemalloc)、简单动态字符串(SDS:simple dynamic strings)、5种对象类型及内部编码、redisObject。在讲述具体内容之前,先说明一下这几个概念之间的关系。
下图是执行set hello world时,所涉及到的数据模型。
图片来源:https://searchdatabase.techtarget.com.cn/7-20218/
实际上,redisObject除了type和ptr字段以外,还有其他字段图中没有给出,如用于指定对象内部编码的字段;后面会详细介绍。
下面来分别介绍jemalloc、redisObject、SDS、对象类型及内部编码。
Redis在编译时便会指定内存分配器;内存分配器可以是 libc 、jemalloc或者tcmalloc,默认是jemalloc。
jemalloc作为Redis的默认内存分配器
,在减小内存碎片方面做的相对比较好。jemalloc在64位系统中,将内存空间划分为小、大、巨大三个范围;每个范围内又划分了许多小的内存块单位;当Redis存储数据时,会选择大小最合适的内存块进行存储。
jemalloc划分的内存单元如下图所示:
图片来源:http://blog.csdn.net/zhengpeitao/article/details/76573053
例如,如果需要存储大小为130字节的对象,jemalloc会将其放入160字节的内存单元中。
前面说到,Redis对象有5种类型;无论是哪种类型,Redis都不会直接存储,而是通过redisObject对象进行存储。
redisObject对象非常重要,Redis对象的类型、内部编码、内存回收、共享对象等功能,都需要redisObject支持,下面将通过redisObject的结构来说明它是如何起作用的。
redisObject的定义如下(不同版本的Redis可能稍稍有所不同):
typedef struct redisObject {
unsigned type:4;
unsigned encoding:4;
unsigned lru:REDIS_LRU_BITS; /* lru time (relative to server.lruclock) */
int refcount;
void *ptr;
} robj;
redisObject的每个字段的含义和作用如下:
type字段表示对象的类型,占4个比特;目前包括REDIS_STRING(字符串)、REDIS_LIST (列表)、REDIS_HASH(哈希)、REDIS_SET(集合)、REDIS_ZSET(有序集合)。
当我们执行type命令时,便是通过读取RedisObject的type字段获得对象的类型,如下:
127.0.0.1:6379> set a 1
OK
127.0.0.1:6379> TYPE a
string
127.0.0.1:6379> HSET b 100 2
(integer) 1
127.0.0.1:6379> TYPE b
hash
127.0.0.1:6379>
encoding表示对象的内部编码,占4个比特。
对于Redis支持的每种类型,都有至少两种内部编码,例如对于字符串,有int、embstr、raw三种编码。通过encoding属性,Redis可以根据不同的使用场景来为对象设置不同的编码,大大提高了Redis的灵活性和效率。以列表对象为例,在3.2版本之前有压缩列表和双端链表两种编码方式;如果列表中的元素较少,Redis倾向于使用压缩列表进行存储,因为压缩列表占用内存更少,而且比双端链表可以更快载入;当列表对象元素较多时,压缩列表就会转化为更适合存储大量元素的双端链表。
通过object encoding命令,可以查看对象采用的编码方式,如下图所示:
127.0.0.1:6379> OBJECT encoding a
"int"
127.0.0.1:6379> OBJECT encoding b
"ziplist"
127.0.0.1:6379
5种对象类型对应的编码方式以及使用条件,将在后面详细介绍。
通过对比lru时间与当前时间,可以计算某个对象的空转时间;object idletime命令可以显示该空转时间(单位是秒)。object idletime命令的一个特殊之处在于它不改变对象的lru值(也就是使用该命令不算访问该对象??)。
127.0.0.1:6379> set c 3
OK
127.0.0.1:6379> set d redis
OK
127.0.0.1:6379> OBJECT idletime c
(integer) 13
127.0.0.1:6379> OBJECT idletime c
(integer) 15
127.0.0.1:6379> OBJECT idletime c
(integer) 17
127.0.0.1:6379> OBJECT idletime d
(integer) 13
127.0.0.1:6379> OBJECT idletime d
(integer) 15
127.0.0.1:6379>
lru值除了通过object idletime命令打印之外,还与Redis的内存回收有关系:如果Redis打开了maxmemory选项,且内存回收算法选择的是volatile-lru或allkeys—lru,那么当Redis内存占用超过maxmemory指定的值时,Redis会优先选择空转时间最长的对象进行释放。
refcount与共享对象
对象回收:C语言并不具备自动内存回收功能,Redis在自己的对象系统中构建了一个引用计数技术实现的内存回收机制,通过这一机制,程序可以通过跟踪对象的引用计数信息,在适当的时候自动释放对象并进行内存回收。每个对象的引用计数信息由redis对象结构的refcount属性记录。refcount记录的是该对象被引用的次数,类型为整型,占4个字节。创建一个新对象时,引用计数值会初始化为1;对象被一个新程序使用时,它的引用计数值会被增1;不再被一个程序使用时减1;引用计数值变为0,对象所占用的内存会被释放。Redis的del命令就依赖decrRefCount操作将value释放。
Redis中被多次使用的对象(refcount>1),称为共享对象。Redis为了节省内存,当有一些对象重复出现时,新的程序不会创建新的对象,而是仍然使用原来的对象。这个被重复使用的对象,就是共享对象。目前共享对象仅支持整数值的字符串对象。
共享对象的具体实现
Redis的共享对象目前只支持整数值的字符串对象。之所以如此,实际上是对内存和CPU(时间)的平衡:共享对象虽然会降低内存消耗,但是判断两个对象是否相等却需要消耗额外的时间。对于整数值,判断操作复杂度为O(1);对于普通字符串,判断复杂度为O(n);而对于哈希、列表、集合和有序集合,判断的复杂度为O(n^2)。
虽然共享对象只能是整数值的字符串对象,但是5种类型都可能使用共享对象(如哈希、列表等的元素可以使用)。
就目前的实现来说,Redis服务器在初始化时,会创建10000个字符串对象,值分别是 0-9999的整数值;当Redis需要使用值为0-9999的字符串对象时,可以直接使用这些共享对象(它们的引用次数refcount固定为2147483647)。10000这个数字可以通过调整参数REDIS_SHARED_INTEGERS(6.0中是OBJ_SHARED_INTEGERS)的值进行改变。当然这些共享对象可以使用append和setbit
命令解除对象的共享状态。
共享对象的引用次数可以通过object refcount命令查看,如下图所示。命令执行的结果说明只有0~9999之间的整数会作为共享对象。
#对象在共享范围0-9999之间,refcount默认为2147483647
127.0.0.1:6379> set a 1
OK
127.0.0.1:6379> OBJECT refcount a
(integer) 2147483647
#解除共享状态
127.0.0.1:6379> APPEND a 1
(integer) 2
#解除共享状态后refcount初始为1
127.0.0.1:6379> OBJECT refcount a
(integer) 1
#超过共享范围0-99999
127.0.0.1:6379> set b 10000
OK
127.0.0.1:6379> OBJECT refcount b
(integer) 1
127.0.0.1:6379>
ptr指针指向具体的数据,如前面的例子中,set hello world,ptr指向包含字符串world的SDS。ptr指针占据的字节数与系统有关,例如64位系统中占8个字节。
综上所述,redisObject的结构与对象类型、编码、内存回收、共享对象都有关系;在64位系统中,一个redisObject对象的大小为16字节:
4bit+4bit+24bit+4Byte+8Byte=16Byte。
Redis没有直接使用C字符串(即以空字符’\0’结尾的字符数组)作为默认的字符串表示,而是使用了SDS。SDS是简单动态字符串(Simple Dynamic String)的缩写。
sds的结构如下:
struct sdshdr {
int len;
int free;
char buf[];
};
其中,buf表示字节数组,用来存储字符串;len表示buf已使用的长度,free表示buf未使用的长度。下面是两个例子。
图片来源:《Redis设计与实现》
通过SDS的结构可以看出,buf数组的长度=free+len+1(其中1表示字符串结尾的空字符);所以,一个SDS结构占据的空间为:free所占长度+len所占长度+ buf数组的长度=4+4+free+len+1=free+len+9。
SDS在C字符串的基础上加入了free和len字段,带来了很多好处:
此外,由于SDS中的buf仍然使用了C字符串(即以’\0’结尾),因此SDS可以使用C字符串库中的部分函数;但是需要注意的是,只有当SDS用来存储文本数据时才可以这样使用,在存储二进制数据时则不行(’\0’不一定是结尾)。
Redis在存储对象时,一律使用SDS代替C字符串。例如set hello world命令,hello和world都是以SDS的形式存储的。而sadd myset member1 member2 member3命令,不论是键(”myset”),还是集合中的元素(”member1”、 ”member2”和”member3”),都是以SDS的形式存储。除了存储对象,SDS还用于存储各种缓冲区。
只有在字符串不会改变的情况下,如打印日志时,才会使用C字符串。
前面已经说过,Redis支持5种对象类型,而每种结构都有至少两种编码;这样做的好处在于:一方面接口与实现分离,当需要增加或改变内部编码时,用户使用不受影响,另一方面可以根据不同的应用场景切换内部编码,提高效率。
Redis各种对象类型支持的内部编码如下图所示(图中版本是Redis3.0,Redis后面版本中又增加了内部编码):
关于Redis内部编码的转换,都符合以下规律:编码转换在Redis写入数据时完成,且转换过程不可逆,只能从小内存编码向大内存编码转换。
(1)概况
字符串是最基础的类型,因为所有的键都是字符串类型,且字符串之外的其他几种复杂类型的元素也是字符串。字符串长度不能超过512MB。
(2)内部编码
字符串类型的内部编码有3种,它们的应用场景如下:
127.0.0.1:6379> set a 123
OK
127.0.0.1:6379> OBJECT encoding a
"int"
127.0.0.1:6379> set b hello
OK
127.0.0.1:6379> OBJECT encoding b
"embstr"
127.0.0.1:6379> set c aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
OK
127.0.0.1:6379> OBJECT encoding c
"raw"
127.0.
embstr和raw进行区分的长度,是39;是因为redisObject的长度是16字节,sds的长度是9+字符串长度;因此当字符串长度是39时,embstr的长度正好是16+9+39=64,jemalloc正好可以分配64字节的内存单元。
(3)编码转换
当int数据不再是整数,或大小超过了long的范围时,自动转化为raw。
而对于embstr,由于其实现是只读的,因此在对embstr对象进行修改时,都会先转化为raw再进行修改,因此,只要是修改embstr对象,修改后的对象一定是raw的,无论是否达到了39个字节。如下所示:
127.0.0.1:6379> set a hello
OK
127.0.0.1:6379> OBJECT encoding a
"embstr"
127.0.0.1:6379> APPEND a ,world
(integer) 11
127.0.0.1:6379> GEt a
"hello,world"
127.0.0.1:6379> OBJECT encoding a
"raw"
127.0.0.1:6379>
(1)概况
列表(list)用来存储多个有序的字符串,每个字符串称为元素;一个列表可以存储2^32-1个元素。Redis中的列表支持两端插入和弹出,并可以获得指定位置(或范围)的元素,可以充当数组、队列、栈等。
(2)内部编码
3.2之前的版本列表的内部编码可以是压缩列表(ziplist)或双端链表(linkedlist),而3.2开始列表采用quicklist进行编码。
双端链表:由一个list结构和多个listNode结构组成;典型结构如下图所示:
通过图中可以看出,双端链表同时保存了表头指针和表尾指针,并且每个节点都有指向前和指向后的指针;链表中保存了列表的长度;dup、free和match为节点值设置类型特定函数,所以链表可以用于保存各种不同类型的值。而链表中每个节点指向的是type为字符串的redisObject。
压缩列表:压缩列表是Redis为了节约内存而开发的,是由一系列特殊编码的连续内存块(而不是像双端链表一样每个节点是指针)组成的顺序型数据结构;具体结构相对比较复杂,略。与双端链表相比,压缩列表可以节省内存空间,但是进行修改或增删操作时,复杂度较高;因此当节点数量较少时,可以使用压缩列表;但是节点数量多时,还是使用双端链表划算。
压缩列表不仅用于实现列表,也用于实现哈希、有序列表;使用非常广泛。
快速(quicklist)列表
我们仍旧可以将其看作一个双向列表,但是列表的每个节点都是一个ziplist,其实就是linkedlist和ziplist的结合,quicklist中每个节点ziplist都能存储多个数据元素。
(3)编码转换
只有同时满足下面两个条件时,才会使用压缩列表:列表中元素数量小于512个;列表中所有字符串对象都不足64字节。如果有一个条件不满足,则使用双端列表;且编码只可能由压缩列表转化为双端链表,反方向则不可能。
#我测试的redis版本高于3.2,所以list的编码格式直接使用的是quickilist
127.0.0.1:6379> RPUSH list1 a b c
(integer) 3
127.0.0.1:6379> OBJECT encoding list1
"quicklist"
(1)概况
哈希(作为一种数据结构),不仅是redis对外提供的5种对象类型的一种(与字符串、列表、集合、有序结合并列),也是Redis作为Key-Value数据库所使用的数据结构。为了说明的方便,在本文后面当使用“内层的哈希”时,代表的是redis对外提供的5种对象类型的一种;使用“外层的哈希”代指Redis作为Key-Value数据库所使用的数据结构。
(2)内部编码
内层的哈希使用的内部编码可以是压缩列表(ziplist)和哈希表(hashtable)两种;Redis的外层的哈希则只使用了hashtable。
压缩列表前面已介绍。与哈希表相比,压缩列表用于元素个数少、元素长度小的场景;其优势在于集中存储,节省空间;同时,虽然对于元素的操作复杂度也由O(1)变为了O(n),但由于哈希中元素数量较少,因此操作的时间并没有明显劣势。
hashtable:一个hashtable由1个dict结构、2个dictht结构、1个dictEntry指针数组(称为bucket)和多个dictEntry结构组成。
正常情况下(即hashtable没有进行rehash时)各部分关系如下图所示:
下面从底层向上依次介绍各个部分:
dictEntry
dictEntry结构用于保存键值对,结构定义如下:
typedef struct dictEntry{
void *key;
union{
void *val;
uint64_tu64;
int64_ts64;
}v;
struct dictEntry *next;
}dictEntry;
其中,各个属性的功能如下:
bucket
bucket是一个数组,数组的每个元素都是指向dictEntry结构的指针。redis中bucket数组的大小计算规则如下:大于dictEntry的、最小的2^n;例如,如果有1000个dictEntry,那么bucket大小为1024;如果有2000个dictEntry,则bucket大小为2048。
dictht
dictht结构如下:
typedef struct dictht{
dictEntry **table;
unsigned long size;
unsigned long sizemask;
unsigned long used;
}dictht;
其中,各个属性的功能说明如下:
dict
一般来说,通过使用dictht和dictEntry结构,便可以实现普通哈希表的功能;但是Redis的实现中,在dictht结构的上层,还有一个dict结构。下面说明dict结构的定义及作用。
dict结构如下:
typedef struct dict{
dictType *type;
void *privdata;
dictht ht[2];
int trehashidx;
} dict;
其中,type属性和privdata属性是为了适应不同类型的键值对,用于创建多态字典。
ht属性和trehashidx属性则用于rehash,即当哈希表需要扩展或收缩时使用。ht是一个包含两个项的数组,每项都指向一个dictht结构,这也是Redis的哈希会有1个dict、2个dictht结构的原因。通常情况下,所有的数据都是存在放dict的ht[0]中,ht[1]只在rehash的时候使用。dict进行rehash操作的时候,将ht[0]中的所有数据rehash到ht[1]中。然后将ht[1]赋值给ht[0],并清空ht[1]。
因此,Redis中的哈希之所以在dictht和dictEntry结构之外还有一个dict结构,一方面是为了适应不同类型的键值对,另一方面是为了rehash。
(3)编码转换
如前所述,Redis中内层的哈希既可能使用哈希表,也可能使用压缩列表。
只有同时满足下面两个条件时,才会使用压缩列表:哈希中元素数量小于512个;哈希中所有键值对的键和值字符串长度都小于64字节。如果有一个条件不满足,则使用哈希表;且编码只可能由压缩列表转化为哈希表,反方向则不可能。
下图展示了Redis内层的哈希编码转换的特点:
127.0.0.1:6379> HSET hash1 k1 v1
(integer) 1
127.0.0.1:6379> HSET hash1 k2 v2
(integer) 1
127.0.0.1:6379> HSET hash1 k3 v3
(integer) 1
127.0.0.1:6379> OBJECT encoding hash1
"ziplist"
127.0.0.1:6379> HSET hash1 k4 v4444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444
(integer) 1
127.0.0.1:6379> OBJECT encoding hash1
"hashtable"
127.0.0.1:6379> HDEL hash1 k4
(integer) 1
127.0.0.1:6379> OBJECT encoding hash1
"hashtable"
(1)概况
集合(set)与列表类似,都是用来保存多个字符串,但集合与列表有两点不同:集合中的元素是无序的,因此不能通过索引来操作元素;集合中的元素不能有重复。
一个集合中最多可以存储2^32-1个元素;除了支持常规的增删改查,Redis还支持多个集合取交集、并集、差集。
(2)内部编码
集合的内部编码可以是整数集合(intset)或哈希表(hashtable)。
哈希表前面已经讲过,这里略过不提;需要注意的是,集合在使用哈希表时,值全部被置为null。
整数集合的结构定义如下:
typedef struct intset{
uint32_t encoding;
uint32_t length;
int8_t contents[];
} intset;
其中,encoding代表contents中存储内容的类型,虽然contents(存储集合中的元素)是int8_t类型,但实际上其存储的值是int16_t、int32_t或int64_t,具体的类型便是由encoding决定的;length表示元素个数。
整数集合适用于集合所有元素都是整数且集合元素数量较小的时候,与哈希表相比,整数集合的优势在于集中存储,节省空间;同时,虽然对于元素的操作复杂度也由O(1)变为了O(n),但由于集合数量较少,因此操作的时间并没有明显劣势。
(3)编码转换
只有同时满足下面两个条件时,集合才会使用整数集合:集合中元素数量小于512个;集合中所有元素都是整数值。如果有一个条件不满足,则使用哈希表;且编码只可能由整数集合转化为哈希表,反方向则不可能。
下图展示了集合编码转换的特点:
127.0.0.1:6379> SADD set1 111 222 333
(integer) 3
127.0.0.1:6379> OBJECT encoding set1
"intset"
127.0.0.1:6379> SADD set1 hello
(integer) 1
127.0.0.1:6379> OBJECT encoding set1
"hashtable"
127.0.0.1:6379> SREM set1 hello
(integer) 1
127.0.0.1:6379> OBJECT encoding set1
"hashtable"
(1)概况
有序集合与集合一样,元素都不能重复;但与集合不同的是,有序集合中的元素是有顺序的。与列表使用索引下标作为排序依据不同,有序集合为每个元素设置一个分数(score)作为排序依据。
(2)内部编码
有序集合的内部编码可以是压缩列表(ziplist)或跳跃表(skiplist)。ziplist在列表和哈希中都有使用,前面已经讲过,这里略过不提。
跳跃表是一种有序数据结构,通过在每个节点中维持多个指向其他节点的指针,从而达到快速访问节点的目的。除了跳跃表,实现有序数据结构的另一种典型实现是平衡树;大多数情况下,跳跃表的效率可以和平衡树媲美,且跳跃表实现比平衡树简单很多,因此redis中选用跳跃表代替平衡树。跳跃表支持平均O(logN)、最坏O(N)的复杂点进行节点查找,并支持顺序操作。Redis的跳跃表实现由zskiplist和zskiplistNode两个结构组成:前者用于保存跳跃表信息(如头结点、尾节点、长度等),后者用于表示跳跃表节点。具体结构相对比较复杂,略。
(3)编码转换
只有同时满足下面两个条件时,才会使用压缩列表:有序集合中元素数量小于128个;有序集合中所有成员长度都不足64字节。如果有一个条件不满足,则使用跳跃表;且编码只可能由压缩列表转化为跳跃表,反方向则不可能。
下图展示了有序集合编码转换的特点:
127.0.0.1:6379> ZADD zet 1 zk 2 kafka 3 redis
(integer) 3
127.0.0.1:6379> OBJECT encoding zet
"ziplist"
127.0.0.1:6379> ZADD zet 4 mysqlllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
(integer) 1
127.0.0.1:6379> OBJECT encoding zet
"skiplist"
##字符串长度大于65
127.0.0.1:6379> ZREM zet mysqlllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
(integer) 1
127.0.0.1:6379> OBJECT encoding zet
"skiplist"
127.0.0.1:6379>
了解Redis的内存模型之后,下面通过几个例子说明其应用。
要估算redis中的数据占据的内存大小,需要对redis的内存模型有比较全面的了解,包括前面介绍的hashtable、sds、redisobject、各种对象类型的编码方式等。
下面以最简单的字符串类型来进行说明。
假设有90000个键值对,每个key的长度是7个字节,每个value的长度也是7个字节(且key和value都不是整数);下面来估算这90000个键值对所占用的空间。在估算占据空间之前,首先可以判定字符串类型使用的编码方式:embstr。
90000个键值对占据的内存空间主要可以分为两部分:一部分是90000个dictEntry占据的空间;一部分是键值对所需要的bucket空间。
每个dictEntry占据的空间包括:
bucket空间:bucket数组的大小为大于90000的最小的2^n,是131072;每个bucket元素为8字节(因为64位系统中指针大小为8字节)。
因此,可以估算出这90000个键值对占据的内存大小为:9000080 + 1310728 = 8248576。
对于字符串类型之外的其他类型,对内存占用的估算方法是类似的,需要结合具体类型的编码方式来确定。
了解redis的内存模型,对优化redis内存占用有很大帮助。下面介绍几种优化场景。
(1)利用jemalloc特性进行优化
上一小节所讲述的90000个键值便是一个例子。由于jemalloc分配内存时数值是不连续的,因此key/value字符串变化一个字节,可能会引起占用内存很大的变动;在设计时可以利用这一点。
例如,如果key的长度如果是8个字节,则SDS为17字节,jemalloc分配32字节;此时将key长度缩减为7个字节,则SDS为16字节,jemalloc分配16字节;则每个key所占用的空间都可以缩小一半。
(2)使用整型/长整型
如果是整型/长整型,Redis会使用int类型(8字节)存储来代替字符串,可以节省更多空间。因此在可以使用长整型/整型代替字符串的场景下,尽量使用长整型/整型。
(3)共享对象
利用共享对象,可以减少对象的创建(同时减少了redisObject的创建),节省内存空间。目前redis中的共享对象只包括10000个整数(0-9999);可以通过调整REDIS_SHARED_INTEGERS参数提高共享对象的个数;例如将REDIS_SHARED_INTEGERS调整到20000,则0-19999之间的对象都可以共享。
考虑这样一种场景:论坛网站在redis中存储了每个帖子的浏览数,而这些浏览数绝大多数分布在0-20000之间,这时候通过适当增大REDIS_SHARED_INTEGERS参数,便可以利用共享对象节省内存空间。
(4)避免过度设计
然而需要注意的是,不论是哪种优化场景,都要考虑内存空间与设计复杂度的权衡;而设计复杂度会影响到代码的复杂度、可维护性。
如果数据量较小,那么为了节省内存而使得代码的开发、维护变得更加困难并不划算;还是以前面讲到的90000个键值对为例,实际上节省的内存空间只有几MB。但是如果数据量有几千万甚至上亿,考虑内存的优化就比较必要了。
内存碎片率是一个重要的参数,对redis 内存的优化有重要意义。
如果内存碎片率过高(jemalloc在1.03左右比较正常),说明内存碎片多,内存浪费严重;这时便可以考虑重启redis服务,在内存中对数据进行重排,减少内存碎片。
如果内存碎片率小于1,说明redis内存不足,部分数据使用了虚拟内存(即swap);由于虚拟内存的存取速度比物理内存差很多(2-3个数量级),此时redis的访问速度可能会变得很慢。因此必须设法增大物理内存(可以增加服务器节点数量,或提高单机内存),或减少redis中的数据。
要减少redis中的数据,除了选用合适的数据类型、利用共享对象等,还有一点是要设置合理的数据回收策略(maxmemory-policy),当内存达到一定量后,根据不同的优先级对内存进行回收。
更多关于redis的知识分享,请前往博客主页。编写过程中,难免出现差错,敬请指出