• Elasticsearch架构原理


    一. Elasticsearch架构原理

    1、Elasticsearch的节点类型

    在Elasticsearch主要分成两类节点,一类是Master,一类是DataNode。

    1.1 Master节点

    在Elasticsearch启动时,会选举出来一个Master节点。当某个节点启动后,然后使用Zen Discovery机制找到集群中的其他节点,建立连接,并从候选主节点中选举出一个主节点。
    Master节点主要负责:

    1. 处理创建,删除索引等请求,负责索引的创建与删除
    2. 决定分片被分配到哪个节点
    3. 维护并且更新Cluster State

    Master Node的最佳实践

    1. Master节点非常重要,在部署上需要考虑解决单点的问题
    2. 为一个集群设置多个Master节点,每个节点只承担Master 的单一角色

    选主的过程

    1. 互相Ping对方,Node ld 低的会成为被选举的节点
    2. 其他节点会加入集群,但是不承担Master节点的角色。一旦发现被选中的主节点丢失,就会选举出新的Master节点
    1.2 DataNode节点

    Elasticsearch集群中,会有N个DataNode节点。DataNode节点主要负责:数据写入、数据检索,大部分Elasticsearch的压力都在DataNode节点上在生产环境中,内存最好配置大一些。
    可以保存数据的节点,叫做Data Node,负责保存分片数据。在数据扩展上起到了至关重要的作用。
    节点启动后,默认就是数据节点,可以设置node.data: false 禁止。
    由Master Node决定如何把分片分发到数据节点上,通过增加数据节点可以解决数据水平扩展和解决数据单点问题。

    1.3 Coordinating Node
    1. 负责接受Client的请求, 将请求分发到合适的节点,最终把结果汇集到一起。
    2. 每个节点默认都起到了Coordinating Node的职责。

    1.4 其他节点

    1. Master eligible nodes:可以参与选举的合格节点
      Master eligible nodes和Master Node
      每个节点启动后,默认就是一个Master eligible节点
      ○ 可以设置 node.master: false禁止
    2. Master-eligible节点可以参加选主流程,成为Master节点
      当第一个节点启动时候,它会将自己选举成Master节点
      每个节点上都保存了集群的状态,只有Master节点才能修改集群的状态信息
      ○ 集群状态(Cluster State) ,维护了一个集群中,必要的信息
      ■ 所有的节点信息
      ■ 所有的索引和其相关的Mapping与Setting信息
      ■ 分片的路由信息
    3. Hot & Warm Node
      ○ 不同硬件配置 的Data Node,用来实现Hot & Warm架构,降低集群部署的成本
    4. Ingest Node
      ○ 数据前置处理转换节点,支持pipeline管道设置,可以使用ingest对数据进行过滤、转换等操作
    5. Machine Learning Node
      ○ 负责跑机器学习的Job,用来做异常检测
    6. Tribe Node
      ○ Tribe Node连接到不同的Elasticsearch集群,并且支持将这些集群当成一个单独的集群处理

    二 、分片和副本机制

    2.1 分片(Primary Shard & Replica Shard)

    Elasticsearch是一个分布式的搜索引擎,索引的数据也是分成若干部分,分布在不同的服务器节点中。分布在不同服务器节点中的索引数据,就是分片(Shard)。Elasticsearch会自动管理分片,如果发现分片分布不均衡,就会自动迁移一个索引(index)由多个shard(分片)组成,而分片是分布在不同的服务器上的

    2.1.1 主分片(Primary Shard)
    • 用以解决数据水平扩展的问题。通过主分片,可以将数据分布到集群内的所有节点之上
    • 一个分片是一个运行的Lucene的实例
    • 主分片数在索引创建时指定,后续不允许修改,除非Reindex
    2.1.2 副本分片(Replica Shard)
    • 用以解决数据高可用的问题。 副本分片是主分片的拷贝
    • 副本分片数,可以动态调整
    • 增加副本数,还可以在一定程度上提高服务的可用性(读取的吞吐)
      分片的设定

    对于生产环境中分片的设定,需要提前做好容量规划

    2.1.3 分片数设置过小
    • 导致后续无法增加节点实现水平扩展
    • 单个分片的数据量太大,导致数据重新分配耗时
    2.1.4 分片数设置过大,

    7.0 开始,默认主分片设置成1,解决了over-sharding(分片过度)的问题

    • 影响搜索结果的相关性打分,影响统计结果的准确性
    • 单个节点上过多的分片,会导致资源浪费,同时也会影响性能

    指定索引的主分片和副本分片数

    PUT /blogs
    {
      "settings": {
        "number_of_shards": 3,
        "number_of_replicas": 1 // 0或1 
      }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7

    #查看集群的健康状况
    GET _cluster/health

    2.2 副本

    为了对Elasticsearch的分片进行容错,假设某个节点不可用,会导致整个索引库都将不可用。所以,需要对分片进行副本容错。每一个分片都会有对应的副本。在Elasticsearch中,默认创建的索引为1个分片、每个分片有1个主分片和1个副本分片。每个分片都会有一个Primary Shard(主分片),也会有若干个Replica Shard(副本分片)
    Primary Shard和Replica Shard不在同一个节点上

    2.3 指定分片、副本数量

    // 创建指定分片数量、副本数量的索引
    在这里插入图片描述

    2.4 集群status

    ● Green: 主分片与副本都正常分配
    ● Yellow: 主分片全部正常分配,有副本分片未能正常分配
    ● Red: 有主分片未能分配。例如,当服务器的磁盘容量超过85%时,去创建了一个新的索引
    CAT API查看集群信息:

    GET /_cat/nodes?v   #查看节点信息
    GET /_cat/health?v    #查看集群当前状态:红、黄、绿
    GET /_cat/shards?v        #查看各shard的详细情况  
    GET /_cat/shards/{index}?v     #查看指定分片的详细情况
    GET /_cat/master?v          #查看master节点信息
    GET /_cat/indices?v         #查看集群中所有index的详细信息
    GET /_cat/indices/{index}?v      #查看集群中指定index的详细信息 
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7

    三、Elasticsearch重要工作流程

    3.1 Elasticsearch文档写入原理

    在这里插入图片描述

    1.选择任意一个DataNode发送请求,例如:node2。此时,node2就成为一个coordinating node(协调节点)
    2.计算得到文档要写入的分片 shard = hash(routing) % number_of_primary_shards routing 是一个可变值,默认是文档的 _id
    3.coordinating node会进行路由,将请求转发给对应的primary shard所在的DataNode(假设primary shard在node1、replica shard在node2)
    4.node1节点上的Primary Shard处理请求,写入数据到索引库中,并将数据同步到Replica shard
    5.Primary Shard和Replica Shard都保存好了文档,返回client.

    注意:es路由分片规则是 shard = hash(routing) % number_of_primary_shards,其中number_of_primary_shards为分片数。

    3.2 Elasticsearch检索原理

    在这里插入图片描述

    1. client发起查询请求,某个DataNode接收到请求,该DataNode就会成为协调节点(Coordinating Node)
      2.协调节点(Coordinating Node)将查询请求广播到每一个数据节点,这些数据节点的分片会处理该查询请求
      3.每个分片进行数据查询,将符合条件的数据放在一个优先队列中,并将这些数据的文档ID、节点信息、分片信息返回给协调节点 协调节点将所有的结果进行汇总,并进行全局排序
      4.协调节点向包含这些文档ID的分片发送get请求,对应的分片将文档数据返回给协调节点,最后协调节点将数据返回给客户端

    如何对集群的容量进行规划

    一个集群总共需要多少个节点?一个索引需要设置几个分片?规划上需要保持一定的余量,当负载出现波动,节点出现丢失时,还能正常运行。
    做容量规划时,一些需要考虑的因素:
    ● 机器的软硬件配置
    ● 单条文档的大小│文档的总数据量│索引的总数据量((Time base数据保留的时间)|副本分片数
    ● 文档是如何写入的(Bulk的大小)
    ● 文档的复杂度,文档是如何进行读取的(怎么样的查询和聚合)

    评估业务的性能需求:
    ● 数据吞吐及性能需求
    ○ 数据写入的吞吐量,每秒要求写入多少数据?
    ○ 查询的吞吐量?
    ○ 单条查询可接受的最大返回时间?
    ● 了解你的数据
    ○ 数据的格式和数据的Mapping
    ○ 实际的查询和聚合长的是什么样的

    ES集群常见应用场景:
    ● 搜索: 固定大小的数据集
    ○ 搜索的数据集增长相对比较缓慢
    ● 日志: 基于时间序列的数据
    ○ 使用ES存放日志与性能指标。数据每天不断写入,增长速度较快
    ○ 结合Warm Node 做数据的老化处理

    硬件配置:
    ● 选择合理的硬件,数据节点尽可能使用SSD
    ● 搜索等性能要求高的场景,建议SSD
    ○ 按照1∶10的比例配置内存和硬盘
    ● 日志类和查询并发低的场景,可以考虑使用机械硬盘存储
    ○ 按照1:50的比例配置内存和硬盘
    ● 单节点数据建议控制在2TB以内,最大不建议超过5TB
    ● JVM配置机器内存的一半,JVM内存配置不建议超过32G
    ● 不建议在一台服务器上运行多个节点

    内存大小要根据Node 需要存储的数据来进行估算
    ● 搜索类的比例建议: 1:16
    ● 日志类: 1:48——1:96之间
    假设总数据量1T,设置一个副本就是2T总数据量
    ● 如果搜索类的项目,每个节点3116 = 496 G,加上预留空间。所以每个节点最多400G数据,至少需要5个数据节点
    ● 如果是日志类项目,每个节点31
    50= 1550 GB,2个数据节点即可

  • 相关阅读:
    Batch Normalization——李宏毅机器学习笔记
    【Pytorch】(十四)C++ 加载TorchScript 模型
    231003-四步MacOS-iPadOS设置无线竖屏随航SideCar
    什么是敏捷测试
    java图片转成base64传给前端
    深入探究ASEMI肖特基二极管MBR60100PT的材质
    【Python程序设计】基于Flask的音乐在线网站/系统/平台
    《Linux C/C++服务器开发实践》之第5章 UDP服务器编程
    初见物理引擎库Cannon.js
    Spring Boot 分离配置文件的 N 种方式
  • 原文地址:https://blog.csdn.net/qq_43663493/article/details/136581998