• 【自然语言处理】BitNet b1.58:1bit LLM时代


    论文地址:https://arxiv.org/pdf/2402.17764.pdf

    相关博客
    【自然语言处理】BitNet b1.58:1bit LLM时代
    【自然语言处理】【长文本处理】RMT:能处理长度超过一百万token的Transformer
    【自然语言处理】【大模型】MPT模型结构源码解析(单机版)
    【自然语言处理】【大模型】ChatGLM-6B模型结构代码解析(单机版)
    【自然语言处理】【大模型】BLOOM模型结构源码解析(单机版)

    一、BitNet

    ​ BitNet采用了与Transformer基本一致的模型架构,仅将标准矩阵乘法层换成了BitLinear,其他组件仍然是高精度的。BitLinear主要是包含的操纵:权重量化、激活量化以及LayerNorm。

    权重量化。通过减均值实现0中心化,然后用sign实现二值化。假设全精度权重为 W ∈ R n × m W\in\mathcal{R}^{n\times m} WRn×m,则二值量化过程为
    W ~ = Sign ( W − α ) (1) \widetilde{W}=\text{Sign}(W-\alpha) \tag{1} \\ W =Sign(Wα)(1)

    Sign ( W i j ) = { + 1 , if    W i j > 0 − 1 , if    W i j ≤ 0 (2) \text{Sign}(W_{ij})={+1,ifWij>01,ifWij0 \tag{2} \\ Sign(Wij)={+1,1,ifWij>0ifWij0(2)

    α = 1 n m ∑ i j W i j (3) \alpha=\frac{1}{nm}\sum_{ij}W_{ij} \tag{3} \\ α=nm1ijWij(3)

    激活量化。使用absmax的方式将激活量化至b-bit。具体的实现方式是乘以 Q b Q_b Qb再除以输入矩阵的最大绝对值,从而将激活缩放至 [ − Q b , Q b ] ( Q b = 2 b − 1 ) [-Q_b,Q_b](Q_b=2^{b-1}) [Qb,Qb](Qb=2b1),即
    x ~ = Quant ( x ) = Clip ( x × Q b γ , − Q b + ϵ , Q b − ϵ ) (4) \tilde{x}=\text{Quant}(x)=\text{Clip}(x\times\frac{Q_b}{\gamma},-Q_b+\epsilon,Q_b-\epsilon) \tag{4}\\ x~=Quant(x)=Clip(x×γQb,Qb+ϵ,Qbϵ)(4)

    Clip ( x , a , b ) = max ⁡ ( a , min ⁡ ( b , x ) ) , γ = ∥ x ∥ ∞ (5) \text{Clip}(x,a,b)=\max(a,\min(b,x)),\quad\gamma=\parallel x\parallel_\infty \tag{5} \\ Clip(x,a,b)=max(a,min(b,x)),γ=∥x(5)

    其中 ϵ \epsilon ϵ是防止裁剪时溢出的小浮点数。

    ​ 对于非线性函数之前的激活值则采用不同的量化方式,通过减轻最小值的方式将其缩放至 [ 0 , Q b ] [0,Q_b] [0,Qb],从而保证所有值均为非负:
    x ~ = Quant ( x ) = Clip ( ( x − η ) × Q b γ , ϵ , Q b − ϵ ) , η = min ⁡ i , j x i j (6) \tilde{x}=\text{Quant}(x)=\text{Clip}((x-\eta)\times\frac{Q_b}{\gamma},\epsilon,Q_b-\epsilon),\quad\eta=\min_{i,j}x_{ij}\tag{6} \\ x~=Quant(x)=Clip((xη)×γQb,ϵ,Qbϵ),η=i,jminxij(6)
    LayerNorm。在对激活值量化前,为了保证量化后的方差稳定,采用了SubLN

    BitLinear的完成计算过程为
    y = W ~ x ~ = W ~ Quant ( LN ( x ) ) × β γ Q b (7) y=\widetilde{W}\tilde{x}=\widetilde{W}\text{Quant}(\text{LN}(x))\times\frac{\beta\gamma}{Q_b}\tag{7} \\ y=W x~=W Quant(LN(x))×Qbβγ(7)

    LN ( x ) = x − E ( x ) Var ( x ) + ϵ , β = 1 n m ∥ W ∥ 1 (8) \text{LN}(x)=\frac{x-E(x)}{\sqrt{\text{Var}(x)+\epsilon}},\quad\beta=\frac{1}{nm}\parallel W\parallel_1 \tag{8} \\ LN(x)=Var(x)+ϵ xE(x),β=nm1W1(8)

    二、BitNet b1.58

    ​ BitNet b1.58在BitNet的基础上做了一些修改。

    权重量化。采用absmean的方式将权重约束在 { − 1 , 0 , 1 } \{-1,0,1\} {1,0,1}中,而BitNet则将权重约束为二值 { − 1 , 1 } \{-1,1\} {1,1}。具体来说,先使用平均绝对值来缩放权重,然后通过舍入的方式转换为 { − 1 , 0 , 1 } \{-1,0,1\} {1,0,1}
    W ~ = RoundClip ( W γ + ϵ , − 1 , 1 ) (9) \widetilde{W}=\text{RoundClip}(\frac{W}{\gamma+\epsilon},-1,1)\tag{9} \\ W =RoundClip(γ+ϵW,1,1)(9)

    RoundClip ( x , a , b ) = max ⁡ ( a , min ⁡ ( b , round ( x ) ) ) (10) \text{RoundClip}(x,a,b)=\max(a,\min(b,\text{round}(x)))\tag{10} \\ RoundClip(x,a,b)=max(a,min(b,round(x)))(10)

    γ = 1 n m ∑ i j ∣ W i j ∣ (11) \gamma=\frac{1}{nm}\sum_{ij}|W_{ij}|\tag{11} \\ γ=nm1ijWij(11)

    激活量化。同BitNet一样,但是对于非线性函数前的激活不再量化至 [ 0 , Q b ] [0,Q_b] [0,Qb],而是都量化至 [ − Q b , Q b ] [-Q_b,Q_b] [Qb,Qb]

    ​ 此外,为了能够方便于开源软件兼容,整体结构采用类似LLaMA的结构。具体来说,使用RMSNorm、SwiGLU、RoPE并移除所有偏置。

    三、实验

    1. 困惑度

    在这里插入图片描述

    ​ BitNet b1.58在3B大小时,困惑度与LLaMA相匹配,但是速度快2.71倍且显存使用减少3.55倍。当BitNet b1.58大小为3.9B时,速度快2.4倍且显存减少3.32倍,并且效果显著优于LLaMA 3B。

    2. 下游任务

    在这里插入图片描述

    ​ 随着模型尺寸的增加,BitNet b1.58和LLaMA在下游任务上的差距逐步缩小。在尺寸达到3B时,BitNet b.158能够与全精度相匹配。

    3. 显存和延时

    在这里插入图片描述

    ​ 随着模型尺寸的增加,BitNet b1.58的速度优势和显存优势会更加明显。

    4. 能耗

    在这里插入图片描述

    ​ 矩阵乘法是LLM中能耗最高的部分。BitNet b1.58主要是INT8的加法计算,而LLaMA则是由FP16加法和乘法组成。在7nm芯片上,BitNet b1.58能够节约71.4倍的计算能耗。随着模型尺寸的增加,BitNet b1.58在能耗方面会越来越高效。

    5. 吞吐

    在这里插入图片描述
    ​ 相同机器下,BitNet b1.58的batch size是LLaMA LLM的11倍,吞吐则是8.9倍。

  • 相关阅读:
    YaRN: Efficient Context Window Extension of Large Language Models
    广州蓝景实训部分享—新人入行做开发,选钱还是选前?
    ElementUI之CUD+表单验证
    MySQL学习笔记
    Docker版部署RocketMQ开启ACL验证
    python常用内置模块
    Java设计模式之策略模式
    Remote Sensing投稿修改意见整理
    虚拟机作为master远程控制台式机中的机器人在仿真环境中进行slam地图构建与自主导航
    【Linux】linux系统VIM简介_使用
  • 原文地址:https://blog.csdn.net/bqw18744018044/article/details/136427782