在分布式系统中,实现一致性是一个关键的挑战。ZooKeeper作为一个分布式协调服务,在其核心原理中采用了一种名为 ZAB(ZooKeeper Atomic Broadcast)的协议来实现分布式一致性。本文将深入解析 ZAB 协议,揭示其在 ZooKeeper 中实现分布式一致性的核心机制。
ZAB 协议全称:Zookeeper Atomic Broadcast(Zookeeper 原子广播协议)。
Zookeeper 是一个为分布式应用提供高效且可靠的分布式协调服务。在解决分布式一致性方面,Zookeeper 并没有使用 Paxos ,而是采用了 ZAB 协议,ZAB是Paxos算法的一种简化实现。
ZAB 协议定义:ZAB 协议是为分布式协调服务 Zookeeper 专门设计的一种支持 崩溃恢复 和 原子广播 的协议。下面会重点讲这两个东西。
基于该协议,Zookeeper 实现了一种 主备模式 的系统架构来保持集群中各个副本之间数据一致性。具体如下图所示:
上图显示了 Zookeeper 如何处理集群中的数据。所有客户端写入数据都是写入到Leader节点,然后,由 Leader 复制到Follower节点中,从而保证数据一致性。
那么复制过程又是如何的呢?复制过程类似两阶段提交(2PC),ZAB 只需要 Follower(含leader自己的ack) 有一半以上返回 Ack 信息就可以执行提交,大大减小了同步阻塞。也提高了可用性。
简单介绍完,开始重点介绍 消息广播 和 崩溃恢复。整个 Zookeeper 就是在这两个模式之间切换。 简而言之,当 Leader 服务可以正常使用,就进入消息广播模式,当 Leader 不可用时,则进入崩溃恢复模式。
ZAB 协议的消息广播过程使用的是一个原子广播协议,类似一个 两阶段提交过程。对于客户端发送的写请求,全部由 Leader 接收,Leader 将请求封装成一个事务 Proposal,将其发送给所有 Follwer ,然后,根据所有 Follwer 的反馈,如果超过半数(含leader自己)成功响应,则执行 commit 操作。
整个广播流程如下:
通过以上步骤,就能够保持集群之间数据的一致性。
还有一些细节:
在消息广播过程中,Leader 崩溃怎么办?还能保证数据一致吗?
实际上,当 Leader 崩溃,即进入我们开头所说的崩溃恢复模式(崩溃即:Leader 失去与过半 Follwer 的联系)。下面来详细讲述。
假设1:Leader 在复制数据给所有 Follwer 之后,还没来得及收到Follower的ack返回就崩溃,怎么办?
假设2:Leader 在收到 ack 并提交了自己,同时发送了部分 commit 出去之后崩溃怎么办?
针对这些问题,ZAB 定义了 2 个原则:
所以,ZAB 设计了下面这样一个选举算法:
能够确保提交已经被 Leader 提交的事务,同时丢弃已经被跳过的事务。
针对这个要求,如果让 Leader 选举算法能够保证新选举出来的 Leader 服务器拥有集群中所有机器 ZXID 最大的事务,那么就能够保证这个新选举出来的 Leader 一定具有所有已经提交的提案。
而且这么做有一个好处是:可以省去 Leader 服务器检查事务的提交和丢弃工作的这一步操作。
当崩溃恢复之后,需要在正式工作之前(接收客户端请求),Leader 服务器首先确认事务是否都已经被过半的 Follwer 提交了,即是否完成了数据同步。目的是为了保持数据一致。
当 Follwer 服务器成功同步之后,Leader 会将这些服务器加入到可用服务器列表中。
实际上,Leader 服务器处理或丢弃事务都是依赖着 ZXID 的,那么这个 ZXID 如何生成呢?
答:在 ZAB 协议的事务编号 ZXID 设计中,ZXID 是一个 64 位的数字,其中低 32 位可以看作是一个简单的递增的计数器,针对客户端的每一个事务请求,Leader 都会产生一个新的事务 Proposal 并对该计数器进行 + 1 操作。
而高 32 位则代表了 Leader 服务器上取出本地日志中最大事务 Proposal 的 ZXID,并从该 ZXID 中解析出对应的 epoch 值(leader选举周期),当一轮新的选举结束后,会对这个值加一,并且事务id又从0开始自增。
高 32 位代表了每代 Leader 的唯一性,低 32 代表了每代 Leader 中事务的唯一性。同时,也能让 Follwer 通过高 32 位识别不同的 Leader。简化了数据恢复流程。
基于这样的策略:当 Follower 连接上 Leader 之后,Leader 服务器会根据自己服务器上最后被提交的 ZXID 和 Follower 上的 ZXID 进行比对,比对结果要么回滚,要么和 Leader 同步。
更多文章