• pytorch 图像数据集管理


    目录

    1.数据集的管理说明

    2.数据集Dataset类说明

    3.图像分类常用的类 ImageFolder


    1.数据集的管理说明

            pytorch使用Dataset来管理训练和测试数据集,前文说过 

    torchvision.datasets.MNIST

            这些 torchvision.datasets里面的数据集都是继承Dataset而来,对Datasetd 管理使用DataLoader我们使用的的时候,只需要把Dataset类放在DataLoader这个容器里面,在训练的时候 for循环从DataLoader容器里面取出批次的数据,对模型进行训练。

    2.数据集Dataset类说明

            我们可以继承Dataset类,对训练和测试数据进行管理,继承Dataset示例:

    1. import torch
    2. from torch.utils.data import Dataset
    3. from torchvision import datasets
    4. from torch.utils.data import DataLoader
    5. from torchvision import transforms
    6. import os
    7. import cv2
    8. #继承from torch.utils.data import Dataset
    9. class CDataSet(Dataset):
    10. def __init__(self,path):
    11. self.path = path
    12. self.list = os.listdir(path)
    13. self.len = len(self.list)
    14. self.name = ['cloudy','rain','shine','sunrise']
    15. self.trans = transforms.ToTensor()
    16. def __len__(self):
    17. return self.len
    18. def __getitem__(self, item):
    19. self.imgpath = os.path.join(self.path,self.list[item])
    20. print(self.imgpath)
    21. img = cv2.imread(self.imgpath)
    22. img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
    23. img = cv2.resize(img,(100,100))
    24. img = self.trans(img)
    25. for i,n in enumerate(self.name):
    26. if n in self.imgpath:
    27. label = i+1
    28. break
    29. return img,label
    30. ds = CDataSet(r'E:\test\pythonProject\dataset\cloudy')
    31. dl = DataLoader(ds,batch_size=16,shuffle=True)
    32. print(len(ds))
    33. print(len(dl))
    34. print(type(ds))
    35. print(type(dl))
    36. print(next(iter(dl)))
    37. '''
    38. D:\anaconda3\python.exe E:\test\pythonProject\test.py
    39. 300
    40. 19
    41. E:\test\pythonProject\dataset\cloudy\cloudy294.jpg
    42. E:\test\pythonProject\dataset\cloudy\cloudy156.jpg
    43. E:\test\pythonProject\dataset\cloudy\cloudy149.jpg
    44. E:\test\pythonProject\dataset\cloudy\cloudy148.jpg
    45. E:\test\pythonProject\dataset\cloudy\cloudy3.jpg
    46. E:\test\pythonProject\dataset\cloudy\cloudy106.jpg
    47. E:\test\pythonProject\dataset\cloudy\cloudy137.jpg
    48. E:\test\pythonProject\dataset\cloudy\cloudy276.jpg
    49. E:\test\pythonProject\dataset\cloudy\cloudy147.jpg
    50. E:\test\pythonProject\dataset\cloudy\cloudy8.jpg
    51. E:\test\pythonProject\dataset\cloudy\cloudy164.jpg
    52. E:\test\pythonProject\dataset\cloudy\cloudy293.jpg
    53. E:\test\pythonProject\dataset\cloudy\cloudy116.jpg
    54. E:\test\pythonProject\dataset\cloudy\cloudy56.jpg
    55. E:\test\pythonProject\dataset\cloudy\cloudy187.jpg
    56. E:\test\pythonProject\dataset\cloudy\cloudy177.jpg
    57. [tensor([[[[0.2235, 0.2471, 0.3569, ..., 0.1490, 0.1373, 0.1373],
    58. [0.2902, 0.4039, 0.4078, ..., 0.1529, 0.1373, 0.1294],
    59. [0.3294, 0.4941, 0.4000, ..., 0.1529, 0.1333, 0.1137],
    60. ...,
    61. [0.0118, 0.0118, 0.0118, ..., 0.0078, 0.0078, 0.0078],
    62. [0.0118, 0.0118, 0.0118, ..., 0.0039, 0.0039, 0.0039],
    63. [0.0118, 0.0118, 0.0118, ..., 0.0039, 0.0039, 0.0039]],
    64. [[0.2196, 0.2471, 0.3608, ..., 0.1725, 0.1608, 0.1608],
    65. [0.2824, 0.3961, 0.4118, ..., 0.1765, 0.1608, 0.1529],
    66. [0.3216, 0.4863, 0.4039, ..., 0.1765, 0.1569, 0.1373],
    67. ...,
    68. [0.0235, 0.0235, 0.0235, ..., 0.0078, 0.0078, 0.0078],
    69. [0.0235, 0.0235, 0.0235, ..., 0.0078, 0.0078, 0.0078],
    70. [0.0235, 0.0235, 0.0235, ..., 0.0157, 0.0196, 0.0157]],
    71. [[0.3098, 0.3412, 0.4510, ..., 0.2196, 0.2078, 0.2078],
    72. [0.3686, 0.4824, 0.4980, ..., 0.2235, 0.2078, 0.2000],
    73. [0.4078, 0.5725, 0.4863, ..., 0.2235, 0.2039, 0.1843],
    74. ...,
    75. [0.0000, 0.0000, 0.0000, ..., 0.0157, 0.0157, 0.0157],
    76. [0.0000, 0.0000, 0.0000, ..., 0.0157, 0.0157, 0.0157],
    77. [0.0000, 0.0000, 0.0000, ..., 0.0078, 0.0039, 0.0078]]],
    78. [[[0.7059, 0.6902, 0.6824, ..., 0.5961, 0.6000, 0.6118],
    79. [0.6980, 0.6824, 0.6745, ..., 0.6039, 0.6078, 0.6196],
    80. [0.6863, 0.6706, 0.6588, ..., 0.6196, 0.6235, 0.6353],
    81. ...,
    82. [0.2706, 0.2941, 0.2706, ..., 0.2745, 0.2745, 0.2706],
    83. [0.2745, 0.2745, 0.2667, ..., 0.2784, 0.2902, 0.2745],
    84. [0.2784, 0.2706, 0.2784, ..., 0.2824, 0.3020, 0.2784]],
    85. [[0.7176, 0.7020, 0.6941, ..., 0.6235, 0.6275, 0.6392],
    86. [0.7098, 0.6941, 0.6863, ..., 0.6314, 0.6353, 0.6471],
    87. [0.6941, 0.6863, 0.6706, ..., 0.6471, 0.6510, 0.6627],
    88. ...,
    89. [0.2784, 0.3020, 0.2824, ..., 0.2824, 0.2824, 0.2784],
    90. [0.2824, 0.2824, 0.2745, ..., 0.2863, 0.2980, 0.2824],
    91. [0.2863, 0.2784, 0.2863, ..., 0.2902, 0.3098, 0.2824]],
    92. [[0.7412, 0.7294, 0.7176, ..., 0.6471, 0.6510, 0.6627],
    93. [0.7373, 0.7216, 0.7137, ..., 0.6549, 0.6588, 0.6706],
    94. [0.7255, 0.7098, 0.6980, ..., 0.6706, 0.6745, 0.6863],
    95. ...,
    96. [0.1961, 0.2196, 0.2000, ..., 0.2000, 0.2000, 0.1961],
    97. [0.2000, 0.2000, 0.1922, ..., 0.2039, 0.2157, 0.2000],
    98. [0.2039, 0.1961, 0.2039, ..., 0.2078, 0.2275, 0.2039]]],
    99. [[[0.3176, 0.3255, 0.3294, ..., 0.5529, 0.5255, 0.4824],
    100. [0.3098, 0.3176, 0.3216, ..., 0.5608, 0.5255, 0.4824],
    101. [0.3059, 0.3098, 0.3098, ..., 0.5686, 0.4941, 0.4588],
    102. ...,
    103. [0.4510, 0.4549, 0.3176, ..., 0.2627, 0.3059, 0.3333],
    104. [0.3843, 0.4980, 0.4000, ..., 0.3804, 0.4235, 0.3804],
    105. [0.4549, 0.6353, 0.7333, ..., 0.4902, 0.5882, 0.6627]],
    106. [[0.3333, 0.3373, 0.3412, ..., 0.5961, 0.5765, 0.5333],
    107. [0.3255, 0.3333, 0.3373, ..., 0.6039, 0.5686, 0.5333],
    108. [0.3216, 0.3255, 0.3255, ..., 0.6157, 0.5412, 0.5098],
    109. ...,
    110. [0.4275, 0.4275, 0.3255, ..., 0.2627, 0.2902, 0.3176],
    111. [0.3804, 0.4510, 0.3961, ..., 0.3529, 0.3843, 0.3529],
    112. [0.4275, 0.5333, 0.6039, ..., 0.4353, 0.5098, 0.5569]],
    113. [[0.3804, 0.3961, 0.4000, ..., 0.6667, 0.6431, 0.6000],
    114. [0.3725, 0.3804, 0.3843, ..., 0.6745, 0.6392, 0.6000],
    115. [0.3686, 0.3725, 0.3725, ..., 0.6784, 0.6118, 0.5843],
    116. ...,
    117. [0.3843, 0.3843, 0.3255, ..., 0.2353, 0.2549, 0.2706],
    118. [0.3412, 0.3882, 0.3725, ..., 0.2902, 0.3098, 0.2863],
    119. [0.3804, 0.4039, 0.4275, ..., 0.3294, 0.3333, 0.3529]]],
    120. ...,
    121. [[[0.5843, 0.6000, 0.6471, ..., 0.3294, 0.3255, 0.3333],
    122. [0.5412, 0.5529, 0.6627, ..., 0.3373, 0.3333, 0.3373],
    123. [0.5137, 0.5098, 0.6235, ..., 0.3451, 0.3451, 0.3412],
    124. ...,
    125. [0.2980, 0.1098, 0.0824, ..., 0.0000, 0.0000, 0.0000],
    126. [0.0078, 0.0000, 0.0039, ..., 0.0000, 0.0000, 0.0000],
    127. [0.0000, 0.0000, 0.0000, ..., 0.0000, 0.0000, 0.0000]],
    128. [[0.5843, 0.6000, 0.6471, ..., 0.3294, 0.3255, 0.3333],
    129. [0.5412, 0.5529, 0.6627, ..., 0.3373, 0.3333, 0.3373],
    130. [0.5137, 0.5098, 0.6235, ..., 0.3451, 0.3451, 0.3412],
    131. ...,
    132. [0.2980, 0.1098, 0.0824, ..., 0.0000, 0.0000, 0.0000],
    133. [0.0078, 0.0000, 0.0039, ..., 0.0000, 0.0000, 0.0000],
    134. [0.0000, 0.0000, 0.0000, ..., 0.0000, 0.0000, 0.0000]],
    135. [[0.5843, 0.6000, 0.6471, ..., 0.3294, 0.3255, 0.3333],
    136. [0.5412, 0.5529, 0.6627, ..., 0.3373, 0.3333, 0.3373],
    137. [0.5137, 0.5098, 0.6235, ..., 0.3451, 0.3451, 0.3412],
    138. ...,
    139. [0.2980, 0.1098, 0.0824, ..., 0.0000, 0.0000, 0.0000],
    140. [0.0078, 0.0000, 0.0039, ..., 0.0000, 0.0000, 0.0000],
    141. [0.0000, 0.0000, 0.0000, ..., 0.0000, 0.0000, 0.0000]]],
    142. [[[0.5608, 0.5843, 0.6196, ..., 0.4431, 0.4314, 0.4275],
    143. [0.5529, 0.5725, 0.6039, ..., 0.4510, 0.4392, 0.4392],
    144. [0.5569, 0.5647, 0.5922, ..., 0.4588, 0.4510, 0.4549],
    145. ...,
    146. [0.1020, 0.0784, 0.0627, ..., 0.1255, 0.1373, 0.1216],
    147. [0.0431, 0.0627, 0.0510, ..., 0.0902, 0.1176, 0.1294],
    148. [0.0902, 0.1059, 0.0588, ..., 0.0902, 0.0941, 0.1020]],
    149. [[0.6275, 0.6510, 0.6863, ..., 0.5020, 0.4902, 0.4863],
    150. [0.6235, 0.6392, 0.6706, ..., 0.5098, 0.4980, 0.4980],
    151. [0.6196, 0.6314, 0.6588, ..., 0.5176, 0.5098, 0.5098],
    152. ...,
    153. [0.1373, 0.1176, 0.0980, ..., 0.1569, 0.1725, 0.1569],
    154. [0.0784, 0.0941, 0.0863, ..., 0.1255, 0.1529, 0.1647],
    155. [0.1255, 0.1412, 0.0941, ..., 0.1255, 0.1294, 0.1373]],
    156. [[0.6039, 0.6275, 0.6627, ..., 0.4824, 0.4706, 0.4667],
    157. [0.5961, 0.6157, 0.6471, ..., 0.4902, 0.4784, 0.4784],
    158. [0.5961, 0.6078, 0.6353, ..., 0.4980, 0.4902, 0.4941],
    159. ...,
    160. [0.1255, 0.1020, 0.0863, ..., 0.1451, 0.1608, 0.1451],
    161. [0.0667, 0.0863, 0.0745, ..., 0.1137, 0.1412, 0.1529],
    162. [0.1137, 0.1294, 0.0824, ..., 0.1137, 0.1176, 0.1255]]],
    163. [[[0.1922, 0.1882, 0.1843, ..., 0.1608, 0.1647, 0.1686],
    164. [0.1961, 0.1922, 0.1882, ..., 0.1686, 0.1686, 0.1725],
    165. [0.2000, 0.2000, 0.1961, ..., 0.1804, 0.1804, 0.1843],
    166. ...,
    167. [0.3686, 0.3882, 0.3961, ..., 0.3098, 0.3098, 0.3098],
    168. [0.3765, 0.3882, 0.3882, ..., 0.2980, 0.2980, 0.2980],
    169. [0.3725, 0.3804, 0.3804, ..., 0.2941, 0.2941, 0.2941]],
    170. [[0.1922, 0.1882, 0.1843, ..., 0.1608, 0.1647, 0.1686],
    171. [0.1961, 0.1922, 0.1882, ..., 0.1686, 0.1686, 0.1725],
    172. [0.2000, 0.2000, 0.1961, ..., 0.1804, 0.1804, 0.1843],
    173. ...,
    174. [0.3686, 0.3882, 0.3961, ..., 0.3098, 0.3098, 0.3098],
    175. [0.3765, 0.3882, 0.3882, ..., 0.2980, 0.2980, 0.2980],
    176. [0.3725, 0.3804, 0.3804, ..., 0.2941, 0.2941, 0.2941]],
    177. [[0.1922, 0.1882, 0.1843, ..., 0.1608, 0.1647, 0.1686],
    178. [0.1961, 0.1922, 0.1882, ..., 0.1686, 0.1686, 0.1725],
    179. [0.2000, 0.2000, 0.1961, ..., 0.1804, 0.1804, 0.1843],
    180. ...,
    181. [0.3686, 0.3882, 0.3961, ..., 0.3098, 0.3098, 0.3098],
    182. [0.3765, 0.3882, 0.3882, ..., 0.2980, 0.2980, 0.2980],
    183. [0.3725, 0.3804, 0.3804, ..., 0.2941, 0.2941, 0.2941]]]]), tensor([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])]
    184. 进程已结束,退出代码为 0
    185. '''

    这里用到的文件夹如图:

    注意:这里主要写 

    def __init__(self,path):
    def __len__(self):
    def __getitem__(self, item):

    这三个函数

    3.图像分类常用的类 ImageFolder

            ImageFolder 使用示例:

            首先整理图像分类分别放在不同的文件夹里面:

    然后直接使用 ImageFolder 装载 dataset 文件夹,就会自动分类图片形成数据集可以直接使用:

    1. import torch
    2. from torch.utils.data import Dataset
    3. from torchvision import datasets
    4. from torch.utils.data import DataLoader
    5. from torchvision import transforms
    6. trans = transforms.Compose([transforms.Resize((96,96)),transforms.ToTensor()])
    7. ds = datasets.ImageFolder("./dataset",transform=trans)
    8. test_ds,train_ds = torch.utils.data.random_split(ds,[len(ds)//5,len(ds)-len(ds)//5])#注意这里需要整除因为这里使用整数
    9. dl = DataLoader(train_ds,batch_size=16,shuffle=True)
    10. print(ds.classes)
    11. print(ds.class_to_idx)
    12. print(len(test_ds))
    13. print(len(train_ds))
    14. print(next(iter(dl)))
    15. '''
    16. D:\anaconda3\python.exe E:\test\pythonProject\test.py
    17. ['cloudy', 'rain', 'shine', 'sunrise']
    18. {'cloudy': 0, 'rain': 1, 'shine': 2, 'sunrise': 3}
    19. 225
    20. 900
    21. [tensor([[[[0.0980, 0.0745, 0.0706, ..., 0.4431, 0.4314, 0.4157],
    22. [0.0627, 0.0667, 0.0706, ..., 0.4941, 0.4510, 0.4510],
    23. [0.1529, 0.1451, 0.1412, ..., 0.3882, 0.4275, 0.4510],
    24. ...,
    25. [0.1176, 0.1176, 0.1176, ..., 0.1333, 0.1255, 0.1608],
    26. [0.1137, 0.1137, 0.1137, ..., 0.1373, 0.1569, 0.2039],
    27. [0.1098, 0.1098, 0.1098, ..., 0.1294, 0.1961, 0.2824]],
    28. [[0.2745, 0.2314, 0.2118, ..., 0.3843, 0.3725, 0.3569],
    29. [0.1922, 0.1765, 0.1686, ..., 0.4353, 0.3922, 0.3922],
    30. [0.2275, 0.2000, 0.1843, ..., 0.3294, 0.3725, 0.3961],
    31. ...,
    32. [0.0353, 0.0353, 0.0353, ..., 0.0784, 0.0667, 0.1059],
    33. [0.0314, 0.0314, 0.0314, ..., 0.0784, 0.0824, 0.1216],
    34. [0.0275, 0.0275, 0.0275, ..., 0.0745, 0.1137, 0.1725]],
    35. [[0.4471, 0.4118, 0.3961, ..., 0.3647, 0.3529, 0.3373],
    36. [0.3490, 0.3373, 0.3333, ..., 0.4235, 0.3804, 0.3765],
    37. [0.3529, 0.3333, 0.3255, ..., 0.3216, 0.3608, 0.3882],
    38. ...,
    39. [0.0235, 0.0235, 0.0235, ..., 0.0431, 0.0353, 0.0549],
    40. [0.0196, 0.0196, 0.0196, ..., 0.0471, 0.0392, 0.0392],
    41. [0.0157, 0.0157, 0.0157, ..., 0.0353, 0.0549, 0.0706]]],
    42. [[[0.0941, 0.0941, 0.0196, ..., 0.1490, 0.1961, 0.1490],
    43. [0.1059, 0.1137, 0.0471, ..., 0.1529, 0.1412, 0.1176],
    44. [0.0745, 0.1255, 0.1059, ..., 0.1569, 0.1373, 0.1176],
    45. ...,
    46. [0.2196, 0.2549, 0.3059, ..., 0.4000, 0.3922, 0.3765],
    47. [0.2118, 0.2471, 0.3020, ..., 0.3804, 0.3686, 0.3608],
    48. [0.1922, 0.2235, 0.2784, ..., 0.3882, 0.3843, 0.3725]],
    49. [[0.2000, 0.1725, 0.0431, ..., 0.1686, 0.2196, 0.1569],
    50. [0.2196, 0.2039, 0.0706, ..., 0.1765, 0.1647, 0.1373],
    51. [0.2000, 0.2275, 0.1373, ..., 0.1804, 0.1608, 0.1412],
    52. ...,
    53. [0.2157, 0.2510, 0.3059, ..., 0.3804, 0.3686, 0.3647],
    54. [0.2118, 0.2471, 0.3020, ..., 0.3686, 0.3529, 0.3569],
    55. [0.1922, 0.2235, 0.2784, ..., 0.3843, 0.3804, 0.3686]],
    56. [[0.1961, 0.1765, 0.0627, ..., 0.1725, 0.2196, 0.1647],
    57. [0.2118, 0.2039, 0.0941, ..., 0.1804, 0.1647, 0.1451],
    58. [0.1882, 0.2235, 0.1569, ..., 0.1843, 0.1608, 0.1608],
    59. ...,
    60. [0.1961, 0.2314, 0.2980, ..., 0.3804, 0.3686, 0.3608],
    61. [0.1961, 0.2314, 0.2941, ..., 0.3647, 0.3529, 0.3490],
    62. [0.1843, 0.2118, 0.2706, ..., 0.3765, 0.3725, 0.3608]]],
    63. [[[0.7804, 0.7804, 0.7804, ..., 0.6627, 0.6588, 0.6549],
    64. [0.7765, 0.7765, 0.7765, ..., 0.6588, 0.6549, 0.6510],
    65. [0.7725, 0.7725, 0.7725, ..., 0.6471, 0.6431, 0.6431],
    66. ...,
    67. [0.1216, 0.1333, 0.1490, ..., 0.1647, 0.1647, 0.1608],
    68. [0.1216, 0.1255, 0.1451, ..., 0.1725, 0.1725, 0.1765],
    69. [0.1176, 0.1255, 0.1451, ..., 0.1686, 0.1569, 0.1451]],
    70. [[0.7843, 0.7843, 0.7843, ..., 0.6667, 0.6627, 0.6588],
    71. [0.7804, 0.7804, 0.7804, ..., 0.6627, 0.6588, 0.6549],
    72. [0.7765, 0.7765, 0.7765, ..., 0.6510, 0.6471, 0.6471],
    73. ...,
    74. [0.1608, 0.1490, 0.1373, ..., 0.1686, 0.1686, 0.1647],
    75. [0.1569, 0.1451, 0.1294, ..., 0.1765, 0.1765, 0.1804],
    76. [0.1569, 0.1412, 0.1294, ..., 0.1725, 0.1608, 0.1490]],
    77. [[0.8039, 0.8039, 0.8039, ..., 0.6863, 0.6824, 0.6784],
    78. [0.8000, 0.8000, 0.8000, ..., 0.6824, 0.6784, 0.6745],
    79. [0.7961, 0.7961, 0.7961, ..., 0.6706, 0.6667, 0.6667],
    80. ...,
    81. [0.0706, 0.0667, 0.0745, ..., 0.1059, 0.1059, 0.1020],
    82. [0.0745, 0.0667, 0.0745, ..., 0.1137, 0.1137, 0.1176],
    83. [0.0745, 0.0706, 0.0745, ..., 0.1098, 0.0980, 0.0863]]],
    84. ...,
    85. [[[0.0275, 0.1059, 0.2157, ..., 0.0196, 0.0196, 0.0196],
    86. [0.0235, 0.1020, 0.1765, ..., 0.0235, 0.0235, 0.0196],
    87. [0.0196, 0.0902, 0.1255, ..., 0.0314, 0.0314, 0.0275],
    88. ...,
    89. [0.0784, 0.1059, 0.1255, ..., 0.1294, 0.1020, 0.0745],
    90. [0.0745, 0.0863, 0.1020, ..., 0.0627, 0.0588, 0.0431],
    91. [0.0588, 0.0667, 0.0824, ..., 0.0667, 0.0627, 0.0353]],
    92. [[0.0275, 0.1059, 0.2157, ..., 0.0157, 0.0157, 0.0157],
    93. [0.0235, 0.1020, 0.1765, ..., 0.0235, 0.0235, 0.0196],
    94. [0.0196, 0.0902, 0.1255, ..., 0.0314, 0.0314, 0.0275],
    95. ...,
    96. [0.0588, 0.0863, 0.1059, ..., 0.1059, 0.0824, 0.0549],
    97. [0.0549, 0.0667, 0.0824, ..., 0.0471, 0.0431, 0.0275],
    98. [0.0392, 0.0471, 0.0627, ..., 0.0588, 0.0510, 0.0275]],
    99. [[0.0275, 0.1059, 0.2157, ..., 0.0275, 0.0275, 0.0235],
    100. [0.0235, 0.1020, 0.1765, ..., 0.0314, 0.0314, 0.0275],
    101. [0.0196, 0.0902, 0.1255, ..., 0.0392, 0.0392, 0.0353],
    102. ...,
    103. [0.0471, 0.0745, 0.0941, ..., 0.1059, 0.0824, 0.0549],
    104. [0.0431, 0.0549, 0.0706, ..., 0.0431, 0.0392, 0.0235],
    105. [0.0275, 0.0353, 0.0510, ..., 0.0510, 0.0471, 0.0235]]],
    106. [[[0.1412, 0.1412, 0.1412, ..., 0.1647, 0.1686, 0.1765],
    107. [0.1451, 0.1373, 0.1333, ..., 0.1647, 0.1686, 0.1765],
    108. [0.1490, 0.1412, 0.1373, ..., 0.1725, 0.1765, 0.1843],
    109. ...,
    110. [0.0039, 0.0039, 0.0039, ..., 0.0118, 0.0078, 0.0078],
    111. [0.0039, 0.0039, 0.0039, ..., 0.0078, 0.0039, 0.0039],
    112. [0.0039, 0.0039, 0.0039, ..., 0.0078, 0.0039, 0.0039]],
    113. [[0.2118, 0.2078, 0.2078, ..., 0.2353, 0.2353, 0.2353],
    114. [0.2157, 0.2118, 0.2078, ..., 0.2392, 0.2392, 0.2431],
    115. [0.2196, 0.2157, 0.2118, ..., 0.2431, 0.2431, 0.2431],
    116. ...,
    117. [0.0039, 0.0039, 0.0039, ..., 0.0118, 0.0078, 0.0078],
    118. [0.0039, 0.0039, 0.0039, ..., 0.0078, 0.0039, 0.0039],
    119. [0.0039, 0.0039, 0.0039, ..., 0.0078, 0.0039, 0.0039]],
    120. [[0.3137, 0.3137, 0.3216, ..., 0.3373, 0.3373, 0.3255],
    121. [0.3176, 0.3137, 0.3216, ..., 0.3412, 0.3412, 0.3412],
    122. [0.3137, 0.3176, 0.3294, ..., 0.3451, 0.3451, 0.3451],
    123. ...,
    124. [0.0039, 0.0039, 0.0039, ..., 0.0118, 0.0078, 0.0078],
    125. [0.0039, 0.0039, 0.0039, ..., 0.0078, 0.0039, 0.0039],
    126. [0.0039, 0.0039, 0.0039, ..., 0.0078, 0.0039, 0.0039]]],
    127. [[[0.0157, 0.0157, 0.0157, ..., 0.0980, 0.0941, 0.0824],
    128. [0.0196, 0.0196, 0.0196, ..., 0.0980, 0.0941, 0.0824],
    129. [0.0235, 0.0235, 0.0235, ..., 0.0980, 0.0941, 0.0824],
    130. ...,
    131. [0.0078, 0.0078, 0.0039, ..., 0.0157, 0.0196, 0.0196],
    132. [0.0039, 0.0039, 0.0039, ..., 0.0157, 0.0118, 0.0039],
    133. [0.0000, 0.0000, 0.0000, ..., 0.0157, 0.0078, 0.0000]],
    134. [[0.0510, 0.0510, 0.0510, ..., 0.1294, 0.1255, 0.1333],
    135. [0.0549, 0.0549, 0.0549, ..., 0.1294, 0.1255, 0.1333],
    136. [0.0588, 0.0588, 0.0588, ..., 0.1294, 0.1255, 0.1333],
    137. ...,
    138. [0.0078, 0.0078, 0.0039, ..., 0.0118, 0.0157, 0.0157],
    139. [0.0039, 0.0039, 0.0039, ..., 0.0118, 0.0078, 0.0000],
    140. [0.0000, 0.0000, 0.0000, ..., 0.0118, 0.0039, 0.0000]],
    141. [[0.1647, 0.1647, 0.1647, ..., 0.2824, 0.2784, 0.2706],
    142. [0.1686, 0.1686, 0.1686, ..., 0.2824, 0.2784, 0.2706],
    143. [0.1725, 0.1725, 0.1725, ..., 0.2824, 0.2784, 0.2706],
    144. ...,
    145. [0.0157, 0.0157, 0.0118, ..., 0.0353, 0.0392, 0.0392],
    146. [0.0118, 0.0118, 0.0118, ..., 0.0353, 0.0314, 0.0235],
    147. [0.0078, 0.0078, 0.0078, ..., 0.0353, 0.0275, 0.0196]]]]), tensor([3, 1, 0, 3, 3, 2, 1, 0, 0, 0, 2, 3, 0, 0, 3, 3])]
    148. 进程已结束,退出代码为 0
    149. '''

    注意:这里使用函数

    train_ds,test_ds = torch.utils.data.random_split(ds,[len(ds)//5,len(ds)-len(ds)//5])#注意这里需要整除,因为这里需要使用整数。

            把数据集分为了训练和测试数据集,从Dataset继承的类都可以用这个分类,记住DatasetDataLoader这个基础类是在torch里面,而关于图片的处理类基本都在torchvision 里面,比如图片的转换到tensor,图片放大缩小功能。

  • 相关阅读:
    巧妙利用表函数将MySQL数据导入到ClickHouse
    C语言memcpy +memmove实现
    《目标检测蓝皮书》附录 | 详解 【分类】【回归】【检测】【分割】 损失函数与性能指标
    vscode在线调试运行C/C++程序的方法
    MFC Windows 程序设计[140]之多样消息对话框属性页(附源码)
    【ML on Kubernetes】第 6 章:机器学习工程
    iOS逆向工程之Theos
    R语言表与因子(详细知识点,深入知识点后续会补充!)
    Docker基础(简单易懂)
    利用numpy库定义一个等比数列:logspace()函数
  • 原文地址:https://blog.csdn.net/klp1358484518/article/details/136333748