数据分析和处理中,难免会遇到各种数据,那么数据呈现怎样的规律呢?不管金融数据,风控数据,营销数据等等,莫不如此。如何通过图示展示数据的规律?
数据表,时间序列数据在数据分析建模中很常见,例如天气预报,空气状态监测,股票交易等金融场景。数据分析过程中重新调整,重塑数据表是很重要的技巧,此处选择Titanic数据,以及巴黎、伦敦欧洲城市空气质量监测 N O 2 NO_2 NO2数据作为样例。
数据分析
经典算法
本文用到的样例数据:
样例代码:
导入关键模块
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
plt.close("all")
蜂窝图,就是六边形图,当很多时候用散点图表达比较密的时候,使用蜂窝图可能会比较清晰,也可以理解是一种关系的热度图。
该例使用随机生成数据来举例。
np.random.seed(36)
df = pd.DataFrame(np.random.randn(1000, 2), columns=["a", "b"])
df["b"] = df["b"] + np.arange(1000)
df.plot.hexbin(x="a", y="b", gridsize=25);
plt.figure();
df4.plot.hist(alpha=0.5);
gridsize是很好的参数,控制六边形的在水平轴的数量,其默认是100。
此外,还可以通过C,和recduce_C_function参数,指导每个位置的数值,和聚合函数可以是mean, max, sum, std等等。
df = pd.DataFrame(np.random.randn(1000, 2), columns=["a", "b"])
df["b"] = df["b"] + np.arange(1000)
df["z"] = np.random.uniform(0, 3, 1000)
df.plot.hexbin(x="a", y="b", C="z", reduce_C_function=np.max, gridsize=25);
plt.figure();
以上代码只是一个简单示例,示例代码中的表达式可以根据实际问题进行修改。
后面介绍下其他的展示形式。
df.plot.area df.plot.barh df.plot.density df.plot.hist df.plot.line
df.plot.bar df.plot.box df.plot.hexbin df.plot.kde df.plot.pie
df.plot.scatter
觉得有用 收藏 收藏 收藏
点个赞 点个赞 点个赞
End
GPT专栏文章:
GPT实战系列-ChatGLM3本地部署CUDA11+1080Ti+显卡24G实战方案
GPT实战系列-LangChain + ChatGLM3构建天气查询助手
GPT实战系列-大模型为我所用之借用ChatGLM3构建查询助手
GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(二)
GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(一)
GPT实战系列-ChatGLM2部署Ubuntu+Cuda11+显存24G实战方案