【Pytorch深度学习开发实践学习】B站刘二大人课程笔记整理lecture10 Basic_CNN
部分课件内容:
代码:
import torch
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import torch.nn as nn
import torch.nn.functional as F
batch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) #把原始图像转为tensor 这是均值和方差
train_set = datasets.MNIST(root='./data/mnist', train=True, download=True, transform=transform)
train_loader = DataLoader(train_set, batch_size=batch_size, shuffle=True)
test_set = datasets.MNIST(root='./data/mnist', train=False, download=True, transform=transform)
test_loader = DataLoader(test_set, batch_size=batch_size, shuffle=True)
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=5)
self.pooling = torch.nn.MaxPool2d(kernel_size=2)
self.fc1 = torch.nn.Linear(320, 10)
def forward(self, x):
batch_size = x.size(0)
x = F.relu(self.pooling(self.conv1(x), ))
x = F.relu(self.pooling(self.conv2(x), ))
x = x.view(batch_size,-1) # flatten
x = self.fc1(x)
return x
model = Net()
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') #把模型迁移到GPU
model = model.to(device) #把模型迁移到GPU
def train(epoch):
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
inputs, labels = data
inputs,labels = inputs.to(device), labels.to(device) #训练内容迁移到GPU上
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 300 == 299: # print every 300 mini-batches
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 300))
running_loss = 0.0
def test(epoch):
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
images, labels = data
images,labels = images.to(device), labels.to(device) #测试内容迁移到GPU上
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % (
100 * correct / total))
if __name__ == '__main__':
for epoch in range(100):
train(epoch)
if epoch % 10 == 0:
test(epoch)